OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A607–A615

Surface-concentrated light and efficient carrier collection in microhole-patterned Si solar cells

Joondong Kim, Eunsongyi Lee, Minkyu Ju, Hyunyub Kim, Junsin Yi, Sang-Jin Moon, Moon Seop Hyun, and Dong-Wook Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue S4, pp. A607-A615 (2013)
http://dx.doi.org/10.1364/OE.21.00A607


View Full Text Article

Enhanced HTML    Acrobat PDF (3186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate photovoltaic characteristics of crystalline Si solar cells with microhole-patterned surface. We compare patterned samples with different hole-widths and periods with a planar counterpart. From the finite-difference time-domain simulation, the patterned and planar samples are expected to have similar short circuit current density, Jsc (difference: 1.2%). In contrast, the difference in the measured Jsc is as large as 12.6%. The simulated optical field patterns reveal that the sample with more significantly concentrated light near the surface has higher quantum efficiency due to more efficient carrier collection. We report the highest efficiency of 15.6% among the hole-patterned solar cells.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(040.6040) Detectors : Silicon
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.6875) Diffraction and gratings : Three-dimensional fabrication
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Photovoltaics

History
Original Manuscript: April 16, 2013
Revised Manuscript: May 12, 2013
Manuscript Accepted: May 13, 2013
Published: May 22, 2013

Citation
Joondong Kim, Eunsongyi Lee, Minkyu Ju, Hyunyub Kim, Junsin Yi, Sang-Jin Moon, Moon Seop Hyun, and Dong-Wook Kim, "Surface-concentrated light and efficient carrier collection in microhole-patterned Si solar cells," Opt. Express 21, A607-A615 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S4-A607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
  2. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater.2(3), 96–102 (2010). [CrossRef]
  3. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar-cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991). [CrossRef]
  4. J. Ko, D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, “Double layer SiNx:H films for passivation and anti-reflection coating of c-Si solar cells,” Thin Solid Films519(20), 6887–6891 (2011). [CrossRef]
  5. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express19(S2Suppl 2), A108–A117 (2011). [CrossRef] [PubMed]
  6. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  7. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express21(S1Suppl 1), A60–A76 (2013). [CrossRef] [PubMed]
  8. J. S. Li, H. Y. Yu, Y. L. Li, F. Wang, M. F. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett.98(2), 021905 (2011). [CrossRef]
  9. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  10. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012). [CrossRef] [PubMed]
  11. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3(692), 692 (2012). [CrossRef] [PubMed]
  12. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20(S2Suppl 2), A224–A244 (2012). [CrossRef] [PubMed]
  13. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express20(S4Suppl 4), A465–A475 (2012). [CrossRef] [PubMed]
  14. S.-K. Kim, K.-D. Song, and H.-G. Park, “Design of input couplers for efficient silicon thin film solar absorbers,” Opt. Express20(S6), A997–A1004 (2012). [CrossRef]
  15. R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit,” Opt. Express19(S4Suppl 4), A664–A672 (2011). [CrossRef] [PubMed]
  16. J. Kim, M. Kim, H. Kim, K. Song, E. Lee, D.-W. Kim, J.-H. Yun, S. Lee, C. Jeong, and J. Yi, “Effective light management of three-dimensionally patterned transparent conductive oxide layers,” Appl. Phys. Lett.101(14), 143904 (2012). [CrossRef]
  17. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B85(11), 115449 (2012). [CrossRef]
  18. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt.14(2), 024004 (2012). [CrossRef]
  19. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011). [CrossRef]
  20. M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci.4(3), 866–871 (2011). [CrossRef]
  21. M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction silicon microwire solar cells,” Nano Lett.12(12), 6278–6282 (2012). [CrossRef] [PubMed]
  22. E. Lee, Y. Kim, M. Gwon, D.-W. Kim, S.-H. Baek, and J. H. Kim, “Comparative experimental and simulative investigations of radial p-n junction Si microwire array solar cells,” Sol. Energy Mater. Sol. Cells103, 93–97 (2012). [CrossRef]
  23. D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and planar solar cells: passivation and characterization,” Nano Lett.11(7), 2704–2708 (2011). [CrossRef] [PubMed]
  24. H. P. Yoon, Y. A. Yuwen, C. E. Kendrick, G. D. Barber, N. J. Podraza, J. M. Redwing, T. E. Mallouk, C. R. Wronski, and T. S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett.96(21), 213503 (2010). [CrossRef]
  25. J. Kim, J.-H. Yun, C.-S. Han, Y. J. Cho, J. Park, and Y. C. Park, “Multiple silicon nanowires-embedded Schottky solar cell,” Appl. Phys. Lett.95(14), 143112 (2009). [CrossRef]
  26. K.-T. Park, Z. Guo, H.-D. Um, J.-Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J.-H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(101), A41–A50 (2011). [CrossRef] [PubMed]
  27. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, M. S. Hyun, J. M. Yang, and J.-H. Lee, “A waferscale Si wire solar cell using radial and bulk p-n junctions,” Nanotechnology21(44), 445303 (2010). [CrossRef] [PubMed]
  28. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett.12(6), 2792–2796 (2012). [CrossRef] [PubMed]
  29. T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt: Res. Appl. (on-line published, DOI: ). [CrossRef]
  30. L. Li, K.-Q. Peng, B. Hu, X. Wang, Y. Hu, X.-L. Wu, and S.-T. Lee, “Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications,” Appl. Phys. Lett.100(22), 223902 (2012). [CrossRef]
  31. C. Herman, C. Trompoukis, V. Depauw, O. El Daif, and O. Deparis, “Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells,” J. Appl. Phys.112(11), 113107 (2012). [CrossRef]
  32. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  33. L. Zeng, P. Bermel, Y. Yi, N.-N. Feng, B. A. Alamariu, C.-Y. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Optimized textured photonic crystal backside reflector for Si thin film solar cells,” Proc. MRS974E, CC02–CC06 (2007).
  34. K. Kotsovos and K. Misiakos, “Three-dimensional simulation of carrier transport effects in the base of rear point contact silicon solar cells,” J. Appl. Phys.89(4), 2491–2496 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited