OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S4 — Jul. 1, 2013
  • pp: A656–A668

Designing optimized nano textures for thin-film silicon solar cells

Klaus Jäger, Marinus Fischer, René A.C.M.M. van Swaaij, and Miro Zeman  »View Author Affiliations

Optics Express, Vol. 21, Issue S4, pp. A656-A668 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thin-film silicon solar cells (TFSSC), which can be manufactured from abundant materials solely, contain nano-textured interfaces that scatter the incident light. We present an approximate very fast algorithm that allows optimizing the surface morphology of two-dimensional nano-textured interfaces. Optimized nano-textures scatter the light incident on the solar cell stronger leading to a higher short-circuit current density and thus efficiency. Our algorithm combines a recently developed scattering model based on the scalar scattering theory, the Perlin-noise algorithm to generate the nano textures and the simulated annealing algorithm as optimization tool. The results presented in this letter allow to push the efficiency of TFSSC towards their theoretical limit.

© 2013 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(290.5880) Scattering : Scattering, rough surfaces
(350.6050) Other areas of optics : Solar energy
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: February 25, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 15, 2013
Published: May 24, 2013

Klaus Jäger, Marinus Fischer, René A.C.M.M. van Swaaij, and Miro Zeman, "Designing optimized nano textures for thin-film silicon solar cells," Opt. Express 21, A656-A668 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Winneker, ed., Global Market Outlook (European Photovoltaic Industry Association, May2013).
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 40),” Prog. Photovolt: Res. Appl. 20, 606–614 (2012). [CrossRef]
  3. H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983). [CrossRef]
  4. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F. Haug, C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5, 535–538 (2011). [CrossRef]
  5. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  7. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1085 (1995). [CrossRef]
  8. J. Chandezon, G. Raoult, D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Optics 11, 235–241 (1980). [CrossRef]
  9. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  10. S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92, 171114 (2008). [CrossRef]
  11. R. Dewan, V. Jovanov, C. Haase, H. Stiebig, D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010). [CrossRef]
  12. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, B. Bläsi, “Diffractive gratings for crystalline silicon solar cells — optimum parameters and loss mechanisms,” Prog. Photovolt: Res. Appl. 20, 862–873 (2012). [CrossRef]
  13. K. Bittkau, T. Beckers, “Near-field study of light scattering at rough interfaces of a-Si:H/μc-Si:H tandem solar cells,” Phys. Status Solidi A 207, 661–666 (2010). [CrossRef]
  14. E. R. Martins, J. Li, Y. Liu, J. Zhou, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012). [CrossRef]
  15. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966). [CrossRef]
  16. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  17. J. Jin, The finite element method in electromagnetics(John Wiley & Sons, 2002).
  18. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18, A335–A341 (2010). [CrossRef] [PubMed]
  19. R. Dewan, I. Vasilev, V. Jovanov, D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110, 013101 (2011). [CrossRef]
  20. O. Isabella, S. Solntsev, D. Caratelli, M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl. 21, 94–108 (2013). [CrossRef]
  21. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012). [CrossRef]
  22. K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, M. Zeman, “Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range,” Meas. Sci. Technol. 22, 105601 (2011). [CrossRef]
  23. K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985). [CrossRef]
  24. K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002). [CrossRef]
  25. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  26. V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optimiz. Theory App. 45, 41–51 (1985). [CrossRef]
  27. N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949). [CrossRef]
  28. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).
  29. H. Sakai, T. Yoshida, T. Hama, Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys. 29, 630–635 (1990). [CrossRef]
  30. M. Python, D. Dominé, T. Söderström, F. Meillaud, C. Ballif, “Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation,” Prog. Photovolt: Res. Appl. 18, 491–499 (2010). [CrossRef]
  31. O. Isabella, J. Krč, M. Zeman, “Modulated surface textures for enhanced light trapping in thin-film silicon solar cells,” Appl. Phys. Lett. 97, 101106 (2010). [CrossRef]
  32. O. Isabella, F. Moll, J. Krč, M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A 207, 642–646 (2010). [CrossRef]
  33. M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett. 12, 1344–1348 (2012). [CrossRef] [PubMed]
  34. A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010). [CrossRef]
  35. P. Klapetek, “Characterization of randomly rough surfaces in nanometric scale using methods of modern metrology,” Ph.D. thesis, Masaryk University, Brno, Czech Republic (2003).
  36. P. Klapetek, D. Nečas, C. Anderson, Gwyddion user guide (2012). http://www.gwyddion.net .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited