OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A735–A749

Efficiency and loss mechanisms of plasmonic Luminescent Solar Concentrators

Clemens Tummeltshammer, Mark S. Brown, Alaric Taylor, Anthony J. Kenyon, and Ioannis Papakonstantinou  »View Author Affiliations

Optics Express, Vol. 21, Issue S5, pp. A735-A749 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a hybrid nanoscale/macroscale model, we simulate the efficiency of a luminescent solar concentrator (LSC) which employs silver nanoparticles to enhance the dye absorption and scatter the incoming light. We show that the normalized optical efficiency can be increased from 10.4% for a single dye LSC to 32.6% for a plasmonic LSC with silver spheres immersed inside a thin dye layer. Most of the efficiency enhancement is due to scattering of the particles and not due to dye absorption/re-emission.

© 2013 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Solar Concentrators

Original Manuscript: May 24, 2013
Revised Manuscript: June 21, 2013
Manuscript Accepted: June 28, 2013
Published: July 8, 2013

Clemens Tummeltshammer, Mark S. Brown, Alaric Taylor, Anthony J. Kenyon, and Ioannis Papakonstantinou, "Efficiency and loss mechanisms of plasmonic Luminescent Solar Concentrators," Opt. Express 21, A735-A749 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15, 2299–2300 (1976). [CrossRef] [PubMed]
  2. A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys.14, 123–139 (1977). [CrossRef]
  3. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators–a review of recent results,” Opt. Express16, 21773–21792 (2008). [CrossRef] [PubMed]
  4. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101, 123114 (2007). [CrossRef]
  5. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt.47, 6763–6768 (2008). [CrossRef] [PubMed]
  6. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater.32, 850–856 (2010). [CrossRef]
  7. S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, and A. J. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energ. Mat. Sol. Cells98, 385–390 (2012). [CrossRef]
  8. H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energ. Mat.16, 223–234 (1987). [CrossRef]
  9. S. Agostinelli, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment506, 250–303 (2003). [CrossRef]
  10. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology18, 044017 (2007). [CrossRef]
  11. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  12. X. Miao, I. Brener, and T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B27, 1561–1570 (2010). [CrossRef]
  13. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008). [CrossRef]
  14. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt.20, 3733–3754 (1981). [CrossRef] [PubMed]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  16. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  19. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express15, 14266–14274 (2007). [CrossRef] [PubMed]
  20. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006). [CrossRef]
  21. Oregon Medical Laser Center, “Rhodamine B,” http://omlc.ogi.edu/spectra/PhotochemCAD/html/009.html (2013).
  22. M. Fikry, M. M. Omar, and L. Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase,” J. Fluoresc.19, 741–746 (2009). [CrossRef] [PubMed]
  23. A. V. Deshpande and E. B. Namdas, “Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate,” J. Lumin.91, 25–31 (2000). [CrossRef]
  24. National Renewable Energy Laboratory, “Reference solar spectral irradiance: Air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ (2013).
  25. F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions,” J. Lumin.44, 105–112 (1989). [CrossRef]
  26. C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D: Appl. Phys.291074–1079 (1996). [CrossRef]
  27. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72, 899–907 (1982). [CrossRef]
  28. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited