OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A774–A785

Diffractive coupling and plasmon-enhanced photocurrent generation in silicon

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. Nylandsted Larsen  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A774-A785 (2013)
http://dx.doi.org/10.1364/OE.21.00A774


View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arrays of metal nanoparticles are considered candidates for improved light-coupling into silicon. In periodic arrays the coherent diffractive coupling of particles can have a large impact on the resonant properties of the particles. We have investigated the photocurrent enhancement properties of Al nanoparticles placed on top of a silicon diode in periodic as well as in random arrays. The photocurrent of the periodic array sample is enhanced relative to that of the random array due to the presence of a Fano-like resonance not observed for the random array. Measurements of the photocurrent as a function of angle, reveal that the Fano-like enhancement is caused by diffractive coupling in the periodic array, which is accordingly identified as an important design parameter for plasmon-enhanced light-coupling into silicon.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1970) Diffraction and gratings : Diffractive optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Photovoltaics

History
Original Manuscript: May 22, 2013
Revised Manuscript: June 29, 2013
Manuscript Accepted: July 1, 2013
Published: July 15, 2013

Citation
C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. Nylandsted Larsen, "Diffractive coupling and plasmon-enhanced photocurrent generation in silicon," Opt. Express 21, A774-A785 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9,205–213 (2010). [CrossRef] [PubMed]
  2. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92,053110 (2008). [CrossRef]
  3. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101,104309 (2009). [CrossRef]
  4. C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. Nylandsted Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics8,79–84 (2013). [CrossRef]
  5. T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. Lundsgaard Hansen, H. U. Ulriksen, and A. Nylandsted Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology, 23,085202 (2012). [CrossRef] [PubMed]
  6. P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett.11,1760–1765 (2011). [CrossRef] [PubMed]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93,191113 (2008). [CrossRef]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16,21793–21800 (2008). [CrossRef] [PubMed]
  9. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express19,A303–A311 (2011). [CrossRef]
  10. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19,25230–25241 (2011). [CrossRef]
  11. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology, 21,235201 (2010). [CrossRef] [PubMed]
  12. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8,1461–1471 (2008). [CrossRef] [PubMed]
  13. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84,4721–4724 (2000). [CrossRef] [PubMed]
  14. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys.121,12606–12612 (2004). [CrossRef] [PubMed]
  15. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys.123,221103 (2005). [CrossRef]
  16. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101,143902 (2008). [CrossRef] [PubMed]
  17. B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett.82,155447 (2010).
  18. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1,021019 (2011). [CrossRef]
  19. B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. Nylandsted Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B84,113405 (2011). [CrossRef]
  20. B. Johansen, C. Uhrenfeldt, and A. Nylandsted Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics8,153–158 (2013). [CrossRef]
  21. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express21,4250–4262 (2013). [CrossRef] [PubMed]
  22. C. Uhrenfeldt, J. Lundsgaard Hansen, T. F. Villesen, J. Jung, H. U. Ulriksen, T. Garm Pedersen, K. Pedersen, and A. Nylandsted Larsen, “Effects of disc shape on plasmon enhanced optical absorption in solar cells,” in Proceedings of the 25th European photovoltaic solar energy conference and exhibition, G. F. de Santi, H. Ossenbrink, and P. Helm, ed. (EU PVSEC2010), pp. 637–640.
  23. http://www.ajaint.com/systems.htm .
  24. http://www.labsphere.com
  25. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev.132,1918–1928 (1963). [CrossRef]
  26. In Ref. [18] the authors investigated periodic arrays of gold nanorods placed in a uniform dielectric environment and argued that the dispersion of collective modes deviate from the Rayleigh Woods anomalies at small angles of incidence due to special conditions for the coupling between the nanoparticle LSPRs and the Rayleigh Woods anomalies at small angles. Similar special coupling conditions at small angles might account for the special observations of the photocurrent measured at 8° angle of incidence in Fig. 5. However, since the high refractive index of the silicon solar cell substrate is likely to ad complexity to the nature of the collective modes in the arrays [21] the interpretations in Ref. [18] can probably not be adapted in a straightforward manner to the present results.
  27. Lumerical FDTD solutions ( www.lumerical.com ).
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, INC., 1985).
  29. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109,073105 (2011). [CrossRef]
  30. F. J. Beck, E. verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19,A146–A156 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited