OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A786–A797

Plasmonic silicon solar cells: impact of material quality and geometry

Celine Pahud, Olindo Isabella, Ali Naqavi, Franz-Josef Haug, Miro Zeman, Hans Peter Herzig, and Christophe Ballif  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A786-A797 (2013)
http://dx.doi.org/10.1364/OE.21.00A786


View Full Text Article

Enhanced HTML    Acrobat PDF (1342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We use stencil lithography to produce the same periodic arrangement of the particles and we use the same solar cell structure on top, thus establishing a fair comparison between a novel plasmonic concept and its more traditional counterpart. Both approaches show strong resonances around 700 nm in the external quantum efficiency the position and intensity of which vary strongly with the nanoparticle shape. Moreover, disagreement between simulations and our experimental results suggests that the dielectric data of bulk silver do not correctly represent the reality. A better fit is obtained by introducing a porous interfacial layer between the silver and zinc oxide. Without the interfacial layer, e.g. by improved processing of the nanoparticles, our simulations show that the nanoparticles concept could outperform traditional back reflectors.

© 2013 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: May 17, 2013
Revised Manuscript: July 4, 2013
Manuscript Accepted: July 4, 2013
Published: July 16, 2013

Citation
Celine Pahud, Olindo Isabella, Ali Naqavi, Franz-Josef Haug, Miro Zeman, Hans Peter Herzig, and Christophe Ballif, "Plasmonic silicon solar cells: impact of material quality and geometry," Opt. Express 21, A786-A797 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Deckman, C. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett.42(11), 968–970 (1983). [CrossRef]
  2. A. Banerjee and S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys.69(2), 1030–1035 (1991). [CrossRef]
  3. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H. Schock, “Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films351(1), 247–253 (1999). [CrossRef]
  4. S. Fay, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films518(11), 2961–2966 (2010). [CrossRef]
  5. S. Guha and J. Yang, “Progress in amorphous and nanocrystalline silicon solar cells,” J. Non-Cryst. Solids352, 1917–1921 (2006). [CrossRef]
  6. S. Benagli, D. Borello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, and L. Castens, “High efficiency amorphous silicon devices on LP-CVD-ZnO TCO prepared in industrial KAI R&D reactor,” Conference Record 23th EU-PVSEC 3BO.9.3 (2009).
  7. J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett.70(22), 2975–2977 (1997). [CrossRef]
  8. H. Lee, S. Ahn, S. Lee, and J. Choi, “Silicon thin film technology applications for low cost and high efficiency photovoltaics,” 21st International Photovoltaic Science and Engineering Conference, Fukuoka 4A–2I–01 (2011).
  9. K. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys.100, 044504 (2006). [CrossRef]
  10. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater.9(3), 205–213, (2010). [CrossRef]
  11. R. Santbergen, T. Temple, R. Liang, A. Smets, R. Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt.14, 024010 (2012). [CrossRef]
  12. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys Lett.94, 213102 (2009). [CrossRef]
  13. V. Ferry, A. Polman, and H. Atwater, “Modeling light-trapping in nanostructured solar cells,” ACS Nano5(12), 10055–10064 (2011). [CrossRef] [PubMed]
  14. R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi A.207(3), 667–670 (2010). [CrossRef]
  15. U. Paetzold, E. Moulin, B. Pieters, U. Rau, and R. Carius, “Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts,” J. Photon. Energy2(1), 027002 (2012). [CrossRef]
  16. F. Tsai, J. Wang, J. Huang, Y. Kiang, and C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express18(102), A207–A220 (2010). [CrossRef] [PubMed]
  17. J. Wang, F. Tsai, J. Huang, C. Chen, N. Li, Y. Kiang, and C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. express, 18(3), 2682–2694 (2010). [CrossRef] [PubMed]
  18. H.R. Stuart and D.G. Hall, “Absorption enhancement in silicononinsulator waveguides using metal island films,” Appl. Phys. Lett.69, 2337 (1996). [CrossRef]
  19. F. Beck, A. Polman, and K. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105, 114310 (2009). [CrossRef]
  20. O. El Daifa, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, I. Gordon, and F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energy Mater. Sol. Cells104, 58–63 (2012). [CrossRef]
  21. R. Santbergen, R. Liang, and M. Zeman, “Amorphous silicon solar cells with silver nanoparticles embedded inside the absorber layer,” Materials Research Society Symposium Proceedings1245. Cambridge Univ Press (2010).
  22. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-Cryst. Solids354(19), 2488–2491 (2008). [CrossRef]
  23. C. Eminian, F. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt: Res. Appl.19(3), 260–265 (2011). [CrossRef]
  24. H. Mizuno, H. Sai, K. Matsubara, and M. Kondo, “Light trapping by Ag nanoparticles chemically assembled inside thin-film hydrogenated microcrystalline Si solar cells,” Jpn. J. Appl. Phys.51, 042302 (2012). [CrossRef]
  25. H. Tan, R. Santbergen, A. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  26. C. Pahud, V. Savu, M. Klein, O. Vazquez-Mena, J. Brugger, and C. Ballif, “Stencil-nanopatterned back reflectors for thin-film amorphous silicon n-i-p solar cells,” IEEE J. Photovolt.3(1), 22–26, (2013). [CrossRef]
  27. O. Vazquez-Mena, T. Sannomiya, L. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano5(2), 844–853 (2011). [CrossRef] [PubMed]
  28. M. Klein, F. Montagne, N. Blondiaux, O. Vazquez-Mena, H. Heinzelmann, R. Pugin, J. Brugger, and V. Savu, “SiN membranes with submicrometer hole arrays patterned by wafer-scale nanosphere lithography,” J. Vac. Sci. Technol. B29(2), 012–021 (2011). [CrossRef]
  29. http://www.ansys.com .
  30. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl.21(1), 94–108 (2013). [CrossRef]
  31. C. Eisele, C. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722 (2001). [CrossRef]
  32. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91, 061116 (2007). [CrossRef]
  33. O. Isabella, A. Campa, M. Heijna, W. Soppa, R. van Ervan, R. Franken, H. Borg, and M. Zeman, “Diffraction gratings for light trapping in thin-film silicon solar cells,” Conference Record of the 23rd European Photovoltaic Solar Energy Conference2320–2324 (2008).
  34. A. Naqavi, K. Söderström, F. Haug, V. Paeder, T. Scharf, H. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express19(1), 128–140 (2011). [CrossRef] [PubMed]
  35. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett.109(17), 173901 (2012). [CrossRef] [PubMed]
  36. A. Naqavi, F. Haug, C. Ballif, T. Scharf, and H. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett.102(13), 1113 (2013). [CrossRef]
  37. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370 (1972). [CrossRef]
  38. E. Palik, Handbook of Optical Constants of Solids(Academic press31998),
  39. L. Ingersoll, “The dispersion of metals in the infra-red spectrum,” Astrophys. J.32(265), (1910). [CrossRef]
  40. M. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nature Photon.6(3), 130–132 (2012). [CrossRef]
  41. D. Nash and J. Sambles, “Surface plasmon-polariton study of the optical dielectric function of silver,” J. Mod. Opt.43(1), 81–91 (1996).
  42. F. Parmigiani, E. Kay, T. Huang, J. Perrin, M. Jurich, and J. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B33(2), 879 (1986). [CrossRef]
  43. D. Sainju, P. van den Oever, N. Podraza, M. Syed, J. Stoke, J. Chen, X. Yang, X. Deng, and R. Collins, “Origin of optical losses in Ag/ZnO back-reflectors for thin film Si photovoltaics,” in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on2, 1732–1735 (2006).
  44. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  45. K. Söderström, F. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells95(12), 3585–3591 (2011). [CrossRef]
  46. C. Lee, T. Lee, and Y. Jen, “Ion-assisted deposition of silver thin films,” Thin Solid Films359(1), 95–97 (2000). [CrossRef]
  47. Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys.113, 013107 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited