OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A808–A820

Light trapping in thin-film solar cells with randomly rough and hybrid textures

Piotr Kowalczewski, Marco Liscidini, and Lucio Claudio Andreani  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A808-A820 (2013)
http://dx.doi.org/10.1364/OE.21.00A808


View Full Text Article

Enhanced HTML    Acrobat PDF (1973 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1950) Diffraction and gratings : Diffraction gratings
(240.0310) Optics at surfaces : Thin films
(240.5770) Optics at surfaces : Roughness

ToC Category:
Photovoltaics

History
Original Manuscript: May 23, 2013
Revised Manuscript: June 20, 2013
Manuscript Accepted: June 20, 2013
Published: August 1, 2013

Citation
Piotr Kowalczewski, Marco Liscidini, and Lucio Claudio Andreani, "Light trapping in thin-film solar cells with randomly rough and hybrid textures," Opt. Express 21, A808-A820 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12, 4070–4076 (2012). [CrossRef] [PubMed]
  2. S. Morawiec, M.J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology24, 265601 (2013). [CrossRef] [PubMed]
  3. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20, A224–A244 (2012). [CrossRef] [PubMed]
  4. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt: Res. Appl.21, 94–108 (2013). [CrossRef]
  5. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L.C. Andreani, and T.F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express21, A433–A439 (2013). [CrossRef]
  6. C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, and F. Buatier de Mongeot, “Self-organized broadband light trapping in thin film amorphous silicon solar cells,” Nanotechnology24, 225201 (2013). [CrossRef] [PubMed]
  7. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express21, A268–A275 (2013). [CrossRef] [PubMed]
  8. R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett.101, 103903 (2012). [CrossRef]
  9. T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys.110, 033111 (2011). [CrossRef]
  10. S. Wiesendanger, M. Zilk, T. Pertsch, C. Rockstuhl, and F. Lederer, “Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells,” Opt. Express21, A450–A459 (2013). [CrossRef]
  11. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010). [CrossRef] [PubMed]
  12. I. Simonsen, “Optics of surface disordered systems,” Eur. Phys. J. — Special Topics181, 1–103 (2010). [CrossRef]
  13. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, Opt. Express19, A865–A874 (2011). [CrossRef]
  14. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys.111, 083108 (2012). [CrossRef]
  15. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express21, A656–A668 (2013). [CrossRef]
  16. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett.37, 4868–4870 (2012). [CrossRef] [PubMed]
  17. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express18, A335–A341 (2010). [CrossRef] [PubMed]
  18. V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, and J. Poortmans, “Epitaxy-free monocrystalline silicon thin film: first steps beyond proof-of-concept solar cells,” Progr. Photovolt: Res. Appl.19, 844–850 (2011). [CrossRef]
  19. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express20, A465–A475 (2012). [CrossRef] [PubMed]
  20. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101, 103901 (2012). [CrossRef]
  21. C. Battaglia, J. Escarré, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, and C. Ballif, “Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells,” Nano Lett.11, 661–665 (2011). [CrossRef] [PubMed]
  22. V. Freilikher, E. Kanzieper, and A. Maradudin, “Coherent scattering enhancement in systems bounded by rough surfaces,” Phys. Rep.288, 127–204 (1997). [CrossRef]
  23. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999). [CrossRef]
  24. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B77, 035324 (2008). [CrossRef]
  25. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).
  26. K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66, 115301 (2002). [CrossRef]
  27. Reference Solar Spectral Irradiance: Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  28. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003). [CrossRef]
  29. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett.29, 1897–1899 (2004). [CrossRef] [PubMed]
  30. D. Gerace and L. C. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express13, 4939–4951 (2005). [CrossRef] [PubMed]
  31. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94, 033903 (2005). [CrossRef] [PubMed]
  32. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72, 899–907 (1982). [CrossRef]
  33. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt: Res. Appl.10, 235–241 (2002). [CrossRef]
  34. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. (2013). In press, published online: http://dx.doi.org/10.1002/pip.2385 . [CrossRef]
  35. J. Krč, M. Zeman, O. Kluth, F. Smole, and M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Film426, 296–304 (2003). [CrossRef]
  36. E. Forniés, C. Zaldo, and J. M. Albella, “Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance,” Sol. Energ. Mat. Sol. Cells87, 583–593 (2005). [CrossRef]
  37. J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energ. Mat. Sol. Cells98, 185–190 (2012). [CrossRef]
  38. M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah, and C. Ballif, “Relation between substrate surface morphology and microcrystalline silicon solar cell performance,” J. Non-Cryst. Solids354, 2258–2262 (2008). [CrossRef]
  39. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano6, 2790–2797 (2012). [CrossRef] [PubMed]
  40. O. Isabella, F. Moll, J. Krč, and M. Zeman, “Modulated surface textures using zinc-oxide films for solar cells applications,” Phys. Status Solidi A207, 642–646 (2010). [CrossRef]
  41. K. Vynck, M. Burresi, F. Riboli, and D.S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11, 1017–1022 (2012). [PubMed]
  42. M. Boccard, C. Battaglia, S. Hänni, K. Söderström, J. Escarré, S. Nicolay, F. Meillaud, M. Despeisse, and C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells,” Nano Lett.12, 1344–1348 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited