OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S5 — Sep. 9, 2013
  • pp: A883–A900

Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states – a simulation-based analysis

Barbara Herter, Sebastian Wolf, Stefan Fischer, Johannes Gutmann, Benedikt Bläsi, and Jan Christoph Goldschmidt  »View Author Affiliations


Optics Express, Vol. 21, Issue S5, pp. A883-A900 (2013)
http://dx.doi.org/10.1364/OE.21.00A883


View Full Text Article

Enhanced HTML    Acrobat PDF (2655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In upconversion processes, two or more low-energy photons are converted into one higher-energy photon. Besides other applications, upconversion has the potential to decrease sub-band-gap losses in silicon solar cells. Unfortunately, upconverting materials known today show quantum yields, which are too low for this application. In order to improve the upconversion quantum yield, two parameters can be tuned using photonic structures: first, the irradiance can be increased within the structure. This is beneficial, as upconversion is a non-linear process. Second, the rates of the radiative transitions between ionic states within the upconverter material can be altered due to a varied local density of photonic states. In this paper, we present a theoretical model of the impact of a photonic structure on upconversion and test this model in a simulation based analysis of the upconverter material β -NaYF4:20% Er3+ within a dielectric waveguide structure. The simulation combines a finite-difference time-domain simulation model that describes the variations of the irradiance and the change of the local density of photonic states within a photonic structure, with a rate equation model of the upconversion processes. We find that averaged over the investigated structure the upconversion luminescence is increased by a factor of 3.3, and the upconversion quantum yield can be improved in average by a factor of 1.8 compared to the case without the structure for an initial irradiance of 200 Wm−2.

© 2013 OSA

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(350.2770) Other areas of optics : Gratings
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: June 18, 2013
Revised Manuscript: July 21, 2013
Manuscript Accepted: July 21, 2013
Published: August 28, 2013

Citation
Barbara Herter, Sebastian Wolf, Stefan Fischer, Johannes Gutmann, Benedikt Bläsi, and Jan Christoph Goldschmidt, "Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states – a simulation-based analysis," Opt. Express 21, A883-A900 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S5-A883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38, 976–989 (2009). [CrossRef] [PubMed]
  2. M. Wang, C.-C. Mi, J.-L. Liu, X.-L. Wu, Y.-X. Zhang, W. Hou, F. Li, and S.-K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd.485, L24–7 (2009). [CrossRef]
  3. H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small5, 2285–2290 (2009). [CrossRef] [PubMed]
  4. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials29, 937–943 (2008). [CrossRef]
  5. B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90, 2329–2337 (2006). [CrossRef]
  6. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104, 139–174 (2004). [CrossRef] [PubMed]
  7. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010). [CrossRef]
  8. B. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron Devices54, 2679–2684 (2007). [CrossRef]
  9. J. Goldschmidt, S. Fischer, P. Löper, K. Krämer, D. Biner, M. Hermle, and S. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells95, 1960–1963 (2011). [CrossRef]
  10. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61, 3337–3346 (2000). [CrossRef]
  11. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Plessen, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205, 2844–2861 (2008). [CrossRef]
  12. F. Hallermann, J. C. Goldschmidt, S. Fischer, P. Löper, and G. von Plessen, “Calculation of up-conversion photoluminescence in Er3+ions near noble-metal nanoparticles,” in “Proc. SPIE Vol. 7725, 77250Y,” (2010), Photonics for Solar Energy Systems III. [CrossRef]
  13. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles - simulation and analysis of the interactions,” Opt. Express20, 271–82 (2012). [CrossRef] [PubMed]
  14. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles; simulation and analysis of the interactions: Errata,” Opt. Express21, 10606–10606 (2013). [CrossRef] [PubMed]
  15. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89, 211107 (2006). [CrossRef]
  16. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals,” Nano Lett.10, 134–138 (2010). 20020691. [CrossRef]
  17. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects,” Phys. Rev. Lett.89, 203002 (2002). [CrossRef] [PubMed]
  18. J. C. Goldschmidt, S. Fischer, H. Steinkemper, B. Herter, T. Rist, S. Wolf, B. Blasi, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by metal and dielectric nanostructures,” in “Proceedings of SPIE,” vol. 8256, A. Freundlich and J.-F. F. Guillemoles, eds. (SPIE, 2012), vol. 8256, pp. 825602–1–9. [CrossRef]
  19. S. Wolf, B. Herter, S. Fischer, O. Höhn, R. Martn-Rodrguez, U. Aeberhard, and J. Goldschmidt*, “Exploiting photonic structures to improve the efficiency of upconversion by field enhancement and a modification of the local density of photonic states,” in “Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition,” (Frankfurt, 2012).
  20. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A50, 1764–1769 (1994). [CrossRef] [PubMed]
  21. W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A80, 053802 (2009). [CrossRef]
  22. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  23. S. G. Romanov, A. V. Fokin, and R. M. D. L. Rue, “Eu3+emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett.76, 1656–1658 (2000). [CrossRef]
  24. C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012). [CrossRef] [PubMed]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, 013904 (2005). [CrossRef] [PubMed]
  26. F. Zhang, Y. Deng, Y. Shi, R. Zhang, and D. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20, 3895–3900 (2010). [CrossRef]
  27. Z. Yang, K. Zhu, Z. Song, D. Zhou, Z. Yin, and J. Qiu, “Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals,” Appl. Opt.50, 287–290 (2011). [CrossRef] [PubMed]
  28. M. J. A. de Dood, A. Polman, and J. G. Fleming, “Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals,” Phys. Rev. B67, 115106 (2003). [CrossRef]
  29. H. A. Lopez and P. M. Fauchet, “Erbium emission from porous silicon one-dimensional photonic band gap structures,” Appl. Phys. Lett.77, 3704–3706 (2000). [CrossRef]
  30. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett.36, 3990–3992 (2011). [CrossRef] [PubMed]
  31. C. Johnson, P. Reece, and G. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells112, 168–181 (2013). [CrossRef]
  32. M. Liscidini and L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar micro-cavities,” Appl. Phys. Lett.85, 1883–1885 (2004). [CrossRef]
  33. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “ χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doublyresonant cavities,” Opt. Express15, 7303–7318 (2007). [CrossRef] [PubMed]
  34. A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77, 013830 (2008). [CrossRef]
  35. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17, 22609–22615 (2009). [CrossRef]
  36. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express19, 22198–22207 (2011). [CrossRef] [PubMed]
  37. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun.47, 7671–7673 (2011). [CrossRef]
  38. H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C115, 19028–19036 (2011). [CrossRef]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  40. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt.34, 2414–2420 (1995). [CrossRef] [PubMed]
  41. J. Nishii, K. Kintaka, and T. Nakazawa, “High-efficiency transmission gratings buried in a fused-sio2 glass plate,” Appl. Opt.43, 1327–1330 (2004). [CrossRef] [PubMed]
  42. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16, 1244–1251 (2004). [CrossRef]
  43. R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem.5, 1222–9 (1966). [CrossRef]
  44. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B12, 1468–1474 (1995). [CrossRef]
  45. M. Fox, Quantum Optics (Oxford University, 2006).
  46. P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett.99, 053601 (2007). [CrossRef] [PubMed]
  47. C. Hermann and O. Hess, “Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap,” J. Opt. Soc. Am. B19, 3013–3018 (2002). [CrossRef]
  48. J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B60, 4688–4695 (1999). [CrossRef]
  49. J. C. Goldschmidt, Novel solar cell concepts(Verlag Dr. Hut, München, 2010).
  50. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111, 013109 (2012). [CrossRef]
  51. M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B71, 115102 (2005). [CrossRef]
  52. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett.109, 203601 (2012). [CrossRef]
  53. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science290, 785–788 (2000). [CrossRef] [PubMed]
  54. J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in “Proceedings IUMRS International Conference on Electronic Materials,” (2008), pp. 307–11.
  55. C. Strümpel, M. McCann, C. del Canizo, I. Tobias, and P. Fath, “Erbium-doped up-converters of silicon solar cells: assessment of the potential,” in “Proceedings of the 20th European Photovoltaic Solar Energy Conference,” (2005), pp. 43–6.
  56. K. Forberich, A. Gombert, S. Pereira, J. Crewett, U. Lemmer, M. Diem, and K. Busch, “Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback,” J. Appl. Phys.100, 023110 (2006). [CrossRef]
  57. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett.77, 2310–2312 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited