OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1018–A1027

Depth profiling analysis of CuIn1-xGaxSe2 absorber layer by laser induced breakdown spectroscopy in atmospheric conditions

Chan Kyu Kim, Seok Hee Lee, Jung Hwan In, Hak Jae Lee, and Sungho Jeong  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A1018-A1027 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports the capability of depth profile analysis of thin CuIn1-xGaxSe2 (CIGS) absorber layer (1.89 μm) with a sub-hundred nanometer resolution by laser induced breakdown spectroscopy (LIBS). The LIBS analysis was carried out with a commercial CIGS solar cell on flexible substrate by using a pulsed Nd:YAG laser (λ = 532 nm, τ = 5 ns, top-hat profile) and an intensified charge-coupled device spectrometer in atmospheric conditions. The measured LIBS elemental profiles across the CIGS layer agreed closely to those measured by secondary ion mass spectrometry. The resolution of depth profile analysis was about 88 nm. Owing to the short measurement time of LIBS and the capability of in-air measurement, it is expected that LIBS can be applied for in situ analysis of elemental composition and their distribution across the film thickness during development and manufacturing of CIGS solar cells.

© 2013 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(350.6050) Other areas of optics : Solar energy
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: August 22, 2013
Revised Manuscript: October 2, 2013
Manuscript Accepted: October 2, 2013
Published: October 14, 2013

Chan Kyu Kim, Seok Hee Lee, Jung Hwan In, Hak Jae Lee, and Sungho Jeong, "Depth profiling analysis of CuIn1-xGaxSe2 absorber layer by laser induced breakdown spectroscopy in atmospheric conditions," Opt. Express 21, A1018-A1027 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg , (updated at March, 2013).
  2. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010). [CrossRef]
  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, W. Roland, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011). [CrossRef]
  4. J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, A. A. Rockett, “Effect of Ga content on defect states in CuIn1-xGaxSe2 photovoltaic devices,” Appl. Phys. Lett. 80(24), 4540–4542 (2002). [CrossRef]
  5. O. Lundberg, M. Bodegård, J. Malmström, L. Stolt, “Influence of the Cu(In, Ga)Se2 thickness and Ga Grading on Solar Cell Performance,” Prog. Photovolt. Res. Appl. 11, 77–88 (2003). [CrossRef]
  6. S. M. Schleussner, T. Törndahl, M. Linnarsson, U. Zimmermann, T. Wätjen, M. Edoff, “Development of gallium gradients in three-stage Cu(In, Ga)Se2 co-evaporation processes,” Prog. Photovolt. Res. Appl. 20(3), 284–293 (2012). [CrossRef]
  7. M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, “High Efficiency Cu(in, Ga)Se2-based solar cells: processing of novel absorber structures,” in Proceeding of IEEE Conference on First World Conference on Photovoltaic Energy Conversion (IEEE, 1994), pp. 68−75.
  8. J. H. Yoon, T. Y. Seong, J. H. Jeong, “Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells,” Prog. Photovolt. Res. Appl. 21(1), 58–63 (2013). [CrossRef]
  9. Y. Jeong, C. W. Kim, D. W. Park, S. C. Jung, J. Lee, H. S. Shim, “Field modulation in Na-incorporated Cu(In,Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities,” Nanoscale Res. Lett. 6(1), 581 (2011). [CrossRef] [PubMed]
  10. S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, S. Niki, “Na-induced variations in the structural, optical, and electrical properties of Cu(In, Ga)Se2 thin film,” J. Appl. Phys. 106(3), 034908 (2009). [CrossRef]
  11. C. L. Perkins, B. Egaas, I. Repins, B. To, “Quantitative analysis of graded Cu(In1-x, Gax)Se2 thin films by AES, ICP-OES, and EPMA,” Appl. Surf. Sci. 257(3), 878–886 (2010). [CrossRef]
  12. W. C. Lim, J. Lee, S. Won, Y. Lee, “Characterization of Cu(In, Ga)Se2 (CIGS) thin film in solar cell devices,” Surf. Interface Anal. 44(6), 724–728 (2012). [CrossRef]
  13. M. M. Islam, T. Sakurai, A. Yamada, S. Otagiri, S. Ishizuka, K. Matsubara, S. Niki, K. Akimoto, “Determination of Cu(In1-x, Gax)3Se5 defect phase in MBE grown Cu(In1-xGax)Se2 thin film by Rietveld analysis,” Sol. Energy Mater. Sol. Cells 95(1), 231–234 (2011). [CrossRef]
  14. S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt: Res. Appl. http://onlinelibrary.wiley.com/doi/10.1002/pip.2264/abstract (published on line). [CrossRef]
  15. K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla, “Diffusion Barriers for CIGS solar cells on metallic substrates,” Thin Solid Films 431−432, 392−397 (2003).
  16. D. W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, “Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. A 15(6), 3044–3049 (1997). [CrossRef]
  17. I. L. Eisgruber, B. Joshi, N. Gomez, J. Britt, T. Vincent, “In situ X-ray fluorescence used for real-time control of CuInxGa1-xSe2 thin film composition,” Thin Solid Films 408(1-2), 64–72 (2002). [CrossRef]
  18. S. H. Lee, H. S. Shim, C. K. Kim, J. H. Yoo, R. E. Russo, S. Jeong, “Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy,” Appl. Opt. 51(7), B115–B120 (2012). [CrossRef] [PubMed]
  19. J. H. In, C. K. Kim, S. H. Lee, S. Jeong, “Reproducibility of CIGS thin film analysis by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(4), 473–481 (2013). [CrossRef]
  20. J. H. In, C. K. Kim, S. H. Lee, H. S. Shim, S. Jeong, “Quantitative analysis of CuIn1-xGaxSe2 thin films with fluctuation of operational parameters using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(6), 890–900 (2013). [CrossRef]
  21. S. Darwiche, M. Benmansour, N. Eliezer, D. Morvan, “Laser-induced breakdown spectroscopy for photovoltaic silicon wafer analysis,” Prog. Photovolt. Res. Appl. 20(4), 463–471 (2012). [CrossRef]
  22. D. G. Papazoglou, V. Papadakis, D. Anglos, “In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures,” J. Anal. At. Spectrom. 19(4), 483–488 (2004). [CrossRef]
  23. J. M. Vadillo, C. C. Garcia, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998). [CrossRef]
  24. M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16(11), 1317–1321 (2001). [CrossRef]
  25. M. Abdelhamid, S. Grassini, E. Angelini, G. M. Ingo, M. A. Harith, “Depth profiling of coated metallic artifacts adopting laser-induced breakdown spectrometry,” Spectrochim. Acta, B At. Spectrosc. 65(8), 695–701 (2010). [CrossRef]
  26. M. Milán, P. Lucena, L. M. Cabalín, J. J. Laserna, “Depth profiling of phosphorus in photonic-grade silicon using laser-induced breakdown spectrometry,” Appl. Spectrosc. 52(3), 444–448 (1998). [CrossRef]
  27. M. Hidalgo, F. Martín, J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68(7), 1095–1100 (1996). [CrossRef] [PubMed]
  28. S. H. Lee, C. K. Kim, J. H. In, D. S. Kim, H. J. Ham, S. H. Jeong, “Nd:YAG laser ablation characteristics of thin CIGS solar cell films,” Appl. Phys. B. in press., doi:. [CrossRef]
  29. Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008) “NIST Atomic Spectra Database, version 3.1.5 (National Institute of Standards and Technology, 2009)”, http://physics.nist.gov/asd3 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited