OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1078–A1093

Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A1078-A1093 (2013)
http://dx.doi.org/10.1364/OE.21.0A1078


View Full Text Article

Enhanced HTML    Acrobat PDF (2803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

© 2013 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(350.6050) Other areas of optics : Solar energy
(160.3918) Materials : Metamaterials

ToC Category:
Subwavelength Structures, nanostructures

History
Original Manuscript: September 12, 2013
Revised Manuscript: October 20, 2013
Manuscript Accepted: October 25, 2013
Published: November 1, 2013

Citation
Hao Wang and Liping Wang, "Perfect selective metamaterial solar absorbers," Opt. Express 21, A1078-A1093 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A1078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Shollh, and Y. Wuo, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci.2(6), 559–588 (2009). [CrossRef]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012). [CrossRef] [PubMed]
  3. A. Isenstadt and J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett.9(2), 125–132 (2013). [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  5. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103R (2008). [CrossRef]
  6. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B80(3), 033108 (2009). [CrossRef]
  7. D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010). [CrossRef]
  8. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, Polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010). [CrossRef]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011). [CrossRef] [PubMed]
  12. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature492(7427), 86–89 (2012). [CrossRef] [PubMed]
  13. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20(12), 13311–13319 (2012). [CrossRef] [PubMed]
  14. J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express21(6), 6697–6706 (2013). [CrossRef] [PubMed]
  15. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23(45), 5410–5414 (2011). [CrossRef] [PubMed]
  16. C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett.13(7), 3352–3357 (2013). [CrossRef]
  17. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill,2007).
  18. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  19. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92(23), 233102 (2008). [CrossRef]
  20. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008). [CrossRef] [PubMed]
  21. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012). [CrossRef]
  22. L. P. Wang and Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer135(9), 091505 (2013). [CrossRef]
  23. B. Zhao, L. P. Wang, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer67, 637–645 (2013). [CrossRef]
  24. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B84(7), 075102 (2011). [CrossRef]
  25. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys.109(7), 074510 (2011). [CrossRef]
  26. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett.99(25), 253101 (2011). [CrossRef]
  27. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett.37(3), 308–310 (2012). [CrossRef] [PubMed]
  28. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012). [CrossRef] [PubMed]
  29. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012). [CrossRef] [PubMed]
  30. K. R. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano6(9), 7998–8006 (2012). [CrossRef] [PubMed]
  31. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt.14(8), 085102 (2012). [CrossRef]
  32. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, “Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers,” Opt. Lett.38(7), 1125–1127 (2013). [CrossRef] [PubMed]
  33. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt.15(5), 055106 (2013). [CrossRef]
  34. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1998).
  36. L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express19(S2Suppl 2), A126–A135 (2011). [CrossRef] [PubMed]
  37. L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” JOSA B27(12), 2595–2604 (2010). [CrossRef]
  38. Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM), Available from: http://rredc.nrel.gov/solar/spectra/am1.5/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited