OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1102–A1112

High power fiber delivery for laser ignition applications

Azer P. Yalin  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A1102-A1112 (2013)
http://dx.doi.org/10.1364/OE.21.0A1102


View Full Text Article

Enhanced HTML    Acrobat PDF (3467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

© 2013 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 6, 2013
Published: November 4, 2013

Virtual Issues
Laser Ignition (2013) Optics Express

Citation
Azer P. Yalin, "High power fiber delivery for laser ignition applications," Opt. Express 21, A1102-A1112 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A1102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame138(1-2), 55–77 (2004). [CrossRef]
  2. J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine - an experimental study,” SAE Paper 780329 (1979).
  3. H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Klausner, G. Herdin, M. Weinrotter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures and diagnostics,” Journal of Engineering for Gas Turbines and Power-Transactions of the Asme127(1), 213–219 (2005). [CrossRef]
  4. S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt.46(19), 4057–4064 (2007). [CrossRef] [PubMed]
  5. G. Lacaze, B. Cuenot, T. Poinsot, and M. Oschwald, “Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration,” Combust. Flame156(6), 1166–1180 (2009). [CrossRef]
  6. A. M. Starik, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov, “The promotion of ignition in a supersonic H-2-air mixing layer by laser-induced excitation of O-2 molecules: Numerical study,” Combust. Flame156(8), 1641–1652 (2009). [CrossRef]
  7. G. Herdin, “GE Jenbacher`s update on laser ignited engines,” ICEF2006–1547, ASME ICE Fall Technical Conference, Sacramento, CA, 2006. [CrossRef]
  8. H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” App. Phys. B-Lasers and Optics87(1), 139–144 (2007). [CrossRef]
  9. H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thevenin, J. C. Rolon, and J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun.256(4-6), 495–506 (2005). [CrossRef]
  10. M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, and C. Berat, “LES of an ignition sequence in a gas turbine engine,” Combust. Flame154(1-2), 2–22 (2008). [CrossRef]
  11. R. Oldenborg, J. Early, and C. Lester, “Advanced ignition and propulsion technology program,” (Los Alamos National Laboratory, 1998).
  12. A. H. Lefebvre, Gas Turbine Combustion (Taylor & Francis, 1999).
  13. T. Marchione, “Effectiveness of localized spark ignition in recirculating n-heptane spray flames,” in 21st ICDERS (Poitiers, France, 2007).
  14. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007). [CrossRef]
  15. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng.48(1), 014202 (2009). [CrossRef]
  16. N. Pavel, M. Tsunekane, K. Kanehara, and T. Taira, “Composite all-ceramics, passively Q-switched Nd:YAG/Cr4+:YAG monolithic micro-laser with two-beam output for multi-pointiIgnition,” in Conference on Lasers and Electro Optics, Baltimore, MD (2011).
  17. M. Tsunekane, T. Inohara, K. Kanehara, and T. Taira, “Micro-solid-state laser for ignition of automobile engines,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (InTech, 2010).
  18. D. L. McIntyre, S. D. Woodruff, and J. S. Ontko, “Lean-burn stationary natural gas reciprocating engine operation with a prototype fiber coupled diode end pumped passively q-switched laser spark plug” ICES2009–76013, ASME ICE Spring Technical Conference, Milwaukee, WI, (2009). [CrossRef]
  19. J. Tauer, H. Kofler, and E. Winter, “Laser-initiated ignition,” Laser & Photonics Reviews4(1), 99–122 (2010). [CrossRef]
  20. D. Graham-Rowe and R. Won, “Lasers for engine ignition,” Nat. Photonics2(9), 515–517 (2008). [CrossRef]
  21. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, and M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett.30(16), 2083–2085 (2005). [CrossRef] [PubMed]
  22. E. Schwarz, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced ignition by optical breakdown,” Laser Phys.20(6), 1545–1553 (2010). [CrossRef]
  23. A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys.14, 738–747 (2004).
  24. J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central European Journal of Physics8(2), 242–248 (2010). [CrossRef]
  25. A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, “Development of a fiber delivered laser ignition system for natural gas engines” (2006). ICEF2006–1574, ASME ICE Fall Technical Conference, Sacramento, CA, 2006. [CrossRef]
  26. B. Bihari, S. B. Gupta, R. R. Sekar, J. Gingrich, and J. Smith, “Development of advanced laser ignition system for stationary natural gas reciprocating engines,” ICEF2005–1325, ASME ICE Fall Technical Conference, Ottawa, Canada, (2005). [CrossRef]
  27. A. Sircar, R. K. Dwivedi, and R. K. Thareja, “Laser induced breakdown of Ar, N-2 and O-2 gases using 1.064, 0.532, 0.355 and 0.266 μm m radiation,” App. Phys. B-Lasers and Optics63, 623–627 (1996).
  28. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun.175(4-6), 419–423 (2000). [CrossRef]
  29. W. F. Hsieh, J. H. Eickmans, and R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” JOSA B-Optical Physics4(11), 1816–1820 (1987). [CrossRef]
  30. R. G. Pinnick, P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, and A. Biswas, “Aerosol-induced laser breakdown thresholds - wavelength dependence,” Appl. Opt.27(5), 987–996 (1988). [CrossRef] [PubMed]
  31. B. Richou, I. Schertz, I. Gobin, and J. Richou, “Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation,” Appl. Opt.36(7), 1610–1614 (1997). [CrossRef] [PubMed]
  32. T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B72(2), 183–186 (2001). [CrossRef]
  33. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt.47(26), 4812–4832 (2008). [CrossRef] [PubMed]
  34. A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed. (SPIE - Int Soc Optical Engineering, 1993), pp. 2–12.
  35. H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci.27(4), 499–503 (2003). [CrossRef]
  36. H. El-Rabii, G. Gaborel, J. P. Lapios, D. Thévenin, J. C. Rolon, and J. P. Martin, “Laser spark ignition of two-phase monodisperse mixtures,” Opt. Commun.256(4-6), 495–506 (2005). [CrossRef]
  37. G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “Laser-induced ignition of kerosene in a model combustor,” in Proceedings of the European Combustion Meeting0612011.
  38. C. Letty, E. Mastorakos, A. R. Masri, M. Juddoo, and W. O'Loughlin, “Structure of igniting ethanol and n-heptane spray flames with and without swirl,” Exp. Therm. Fluid Sci.43, 47–54 (2012). [CrossRef]
  39. G. C. Gebel, T. Mosbach, W. Meier, and M. Aigner, “An experimental investigation of kerosene droplet breakup by laser-induced blast waves,” in Proceedings of ASME Turbo Expo 2012021505 (Coopenhagen, Denmark, 2012). [CrossRef]
  40. T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun.245(1-6), 27–35 (2005). [CrossRef]
  41. Y. Matsuura, A. Tsuchiuchi, H. Noguchi, and M. Miyagi, “Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers,” Appl. Opt.46(8), 1279–1282 (2007). [CrossRef] [PubMed]
  42. Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt.41(3), 442–445 (2002). [CrossRef] [PubMed]
  43. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt.45(36), 9160–9167 (2006). [CrossRef] [PubMed]
  44. A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, “Laser ignition of natural gas engines using fiber delivery,” ICEF2005–1336, ASME ICE Fall Technical Conference, Ottawa, Canada, (2005). [CrossRef]
  45. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998). [CrossRef]
  46. B. Bihari, S. B. Gupta, R. R. Sekar, J. Gingrich, and J. Smith, “Development of advanced laser ignition system for stationary natural gas reciprocating engines,” ICEF2005–1325, ASME ICE Fall Technical Conference, Ottawa, Canada,(2005). [CrossRef]
  47. J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fiber types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11, 054007 (2009).
  48. M. Biruduganti, S. Gupta, B. Bihari, G. Klett, and R. Sekar, “Performance analysis of a natural gas generator using laser ignition,” ICEF2004–983, ASME ICE Fall Technical Conference, Long Beach, California, 2004. [CrossRef]
  49. S. Joshi, N. Wilvert, and A. P. Yalin, “Delivery of high intensity beams with large clad step-index fibers for engine ignition,” App. Phys. B-Lasers and Optics108(4), 925–932 (2012). [CrossRef]
  50. S. Hurand, L. A. Chauny, H. El-Rabii, S. Joshi, and A. P. Yalin, “Mode coupling and output beam quality of 100-400 μm core silica fibers,” Appl. Opt.50(4), 492–499 (2011). [CrossRef] [PubMed]
  51. N. Wilvert, S. Joshi, and A. Yalin, “On comparative engine performance testing with fiber delivered laser ignition and electrical ignition,” ICEF2012–92007, ASME ICE Fall Technical Conference, Vancouver, Canada, (2012). [CrossRef]
  52. A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge University Press, 1989).
  53. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J.51(8), 1767–1783 (1972). [CrossRef]
  54. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998). [CrossRef] [PubMed]
  55. S. Joshi, “Fiber delivery and diagnostics of laser spark ignition for natural gas engines,” PhD Thesis, Colorado State University, (2008).
  56. N. Wilvert, “Development and testing of a solid core fiber optic delivery system and ultraviolet preionization for laser ignition,” MSc Thesis, Colorado State University, (2012).
  57. A. Bjarklev, J. Broeng, and A.-S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
  58. J. D. Shephard, F. Couny, P. S. J. Russell, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt.44(21), 4582–4588 (2005). [CrossRef] [PubMed]
  59. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett.4(6), 444–448 (2007). [CrossRef]
  60. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys.36(12), 1375–1381 (2003). [CrossRef]
  61. D. M. T. L. Michaille, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers,” presented at the Proc. SPIE 5618 (2004). [CrossRef]
  62. A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett.2(11), 529–531 (2005). [CrossRef]
  63. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” App. Phys. Lett. 89111119 (2006).
  64. Z. Ruff, D. Shemuly, X. A. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express18(15), 15697–15703 (2010). [CrossRef] [PubMed]
  65. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J. L. Auguste, J. M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett.37(9), 1430–1432 (2012). [CrossRef] [PubMed]
  66. M.-Y. Cheng, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-microm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett.30(4), 358–360 (2005). [CrossRef] [PubMed]
  67. J. M. Kriesel, N. Gat, and D. Plemmons, “Fiber optics for remote delivery of high power pulsed laser beams,” Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010.
  68. F. Loccisano, S. Joshi, I. S. Franka, Z. Y. Yin, W. R. Lempert, and A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt.51(27), 6691–6699 (2012). [CrossRef] [PubMed]
  69. P. S. Hsu, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH,” Appl. Opt.52(13), 3108–3115 (2013). [CrossRef] [PubMed]
  70. M. N. Shneider, A. M. Zheltikov, and R. B. Miles, “Tailoring the air plasma with a double laser pulse,” Phys. Plasmas18(6), 063509 (2011). [CrossRef]
  71. N. Wilvert, S. Joshi, and A. Yalin, “Ultraviolet laser plasma preionization and novel thomson scattering method for weakly ionized discharges,” in 51st AIAA Aerospace Sciences Meeting (Grapevine, TX, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited