OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A1113–A1125

Laser ignited engines: progress, challenges and prospects

Geoff Dearden and Tom Shenton  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A1113-A1125 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

© 2013 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.3538) Lasers and laser optics : Lasers, pulsed

Original Manuscript: September 12, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 15, 2013
Published: November 4, 2013

Virtual Issues
Laser Ignition (2013) Optics Express

Geoff Dearden and Tom Shenton, "Laser ignited engines: progress, challenges and prospects," Opt. Express 21, A1113-A1125 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. D. Maker, R. W. Terhune, C. M. Savage, “Optical third harmonic generation,” 3rd Int.Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).
  2. P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–522 (1994). [CrossRef]
  3. T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122(4), 508–510 (2000). [CrossRef]
  4. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004). [CrossRef]
  5. J. D. Dale, P. R. Smy and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE 780329 (1978).
  6. J. Tauer, H. Kofler, E. Wintner, “Laser-initiated ignition,” Laser & Photon. Rev. 4(1), 99–122 (2010). [CrossRef]
  7. M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engine applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012). [CrossRef]
  8. C. Morgan, “Laser-Induced Breakdown of Gases,” Rep. Prog. Phys. 38(5), 621–665 (1975). [CrossRef]
  9. S. S. Vorontsov, V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, “Peculiarities of the ignition of propane-air premixed flows by CO2 laser radiation,” Thermophys. Aeromech. 13(4), 615–621 (2006). [CrossRef]
  10. H. Kopecek, E. Wintner, M. Lackner, F. Winter, and A. Hultqvist, “Laser-stimulated Ignition in a Homogeneous Charge Compression Ignition Engine,” SAE Technical Paper 2004–01–0937 (2004). [CrossRef]
  11. Y. L. Chen, J. W. L. Lewis, C. Parigger, “Spatial & temporal profiles of pulsed laser-induced air plasma emissions,” J. Quantitative Spectrosc. Radiative Transf. 67(2), 91–103 (2000). [CrossRef]
  12. J. D. Mullett, “Laser-Induced Ignition Systems for Gasoline Automotive Engines,” PhD Thesis, University of Liverpool (2009).
  13. R. D. Dodd, “Laser Ignition of an Internal Combustion Engine,” PhD Thesis, Univ. of Liverpool (2007).
  14. T. X. Phuoc, “Laser-induced spark ignition: fundamentals and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006). [CrossRef]
  15. J. D. Mullett, R. D. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D 40(15), 4730–4739 (2007). [CrossRef]
  16. M. H. Morsy, S. H. Chung, “Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture,” Exp. Therm. Fluid Sci. 27(4), 491–497 (2003). [CrossRef]
  17. H. Kopecek, H. Maier, G. Reider, F. Winter, E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003). [CrossRef]
  18. J. D. Mullett, P. B. Dickinson, A. T. Shenton, G. Dearden and K. G. Watkins “Multi-Cylinder Laser and Spark Ignition in an Ic Gasoline Automotive Engine: A Comparative Study,” SAE 2008–01–0470 (2008).
  19. R. D. Dodd, J. D. Mullett, S. G. Carroll, G. Dearden, A. T. Shenton, K. G. Watkins, G. Triantos, and S. Keen, “Laser Ignition of an IC Test Engine using an Nd:YAG Laser and the Effect of Key Laser Parameters on Engine Combustion Performance,” Proc. Adv. Laser Applications Conf. (ALAC 2005), 104, Laurin (2005).
  20. A. H. Al-Janabi, “Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition,” Laser Phys. Lett. 2(11), 529–531 (2005). [CrossRef]
  21. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  22. J. Shirley, “Engine window soot removal by a laser shock cleaning process,” MSc(Eng) Thesis, Department of Engineering, University of Liverpool (2003).
  23. R. D. Dodd, J. Mullett, S. Carroll, J. Mullett, G. Dearden, T. Shenton, K. Watkins, G. Triantos, S. Keen, “Laser ignition of an IC test engine using an Nd:YAG laser and the effect of key laser parameters on engine combustion performance,” Lasers Engineering 17, 213–231 (2007).
  24. J. D. Mullett, G. Dearden, R. D. Dodd, A. T. Shenton, G. Triantos, K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A: Pure Appl. Opt. 11(5), 054007 (2009). [CrossRef]
  25. P. B. Dickinson, A. T. Shenton, J. D. Mullett, G. Dearden, and A. Scarisbrick, “Prospects for laser ignition in gasoline engine control,” 10th Int. Symp. on Advanced Vehicle Control (AVEC10), 22–26 (2010).
  26. R. Jurgen, Automotive Electronics Handbook (McGraw-Hill, 1995).
  27. R. D. Fruechte, F. E. Coats, and C. H. Folkerts, “Idle speed control for automobiles,” IEEE Proc. 17th ISECE Conference, 467–472 (1983).
  28. L. Mosche, J. G. Stevens, “Photochemical ignition of premixed hydrogen/oxidizer mixtures with excimer lasers,” Combust. Flame 60(2), 195–202 (1985). [CrossRef]
  29. B. E. Forch, A. W. Miziolek, “Laser-based ignition of H2/02 and D2/02 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm,” Combust. Flame 85(1-2), 254–262 (1985). [CrossRef]
  30. T. X. Phuoc, C. M. White, “Experimental studies of the absorption and emissions from laser-induced spark in combustible gases,” Opt. Commun. 181(4-6), 353–359 (2000). [CrossRef]
  31. J. X. Ma, D. R. Alexander, D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998). [CrossRef]
  32. R. Tambay, R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532 and 1.06μm,” J. Appl. Phys. 70(5), 2890–2892 (1991). [CrossRef]
  33. D. L. A. McIntyre, “Laser spark plug ignition system for a stationary lean-burn natural gas reciprocating engine,” PhD Dissertation, West Virginia University (2007).
  34. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007). [CrossRef]
  35. G. Kroupa, G. Franz, E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009). [CrossRef]
  36. J. A. Wisdom, D. S. Hum, M. J. F. Digonnet, A. Ikesue, M. M. Fejer, R. L. Byer, “2.6-watt average-power mode-locked ceramic Nd:YAG laser,” Proc. SPIE 6469, 64690C, 64690C-6 (2007). [CrossRef]
  37. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010). [CrossRef]
  38. H. Ranner, P. K. Tewari, H. Kofler, M. Lackner, E. Wintner, A. K. Agarwal, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007). [CrossRef]
  39. T. X. Phuoc, “A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force,” Opt. Commun. 245(1-6), 27–35 (2005). [CrossRef]
  40. S. Joshi, A. P. Yalin, A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46(19), 4057–4064 (2007). [CrossRef] [PubMed]
  41. Y. Matsuura, G. Takada, T. Yamamoto, Y.-W. Shi, M. Miyagi, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41(3), 442–445 (2002). [CrossRef] [PubMed]
  42. A. P. Yalin, M. DeFoort, B. Willson, Y. Matsuura, M. Miyagi, “Use of hollow-core fibers to deliver nanosecond Nd:YAG laser pulses to form sparks in gases,” Opt. Lett. 30(16), 2083–2085 (2005). [CrossRef] [PubMed]
  43. X.-H. Zhao, G.-C. Shan, Q. Yang, B. Yang, Y. Gao, “Optical interrupter for high peak power transfer in laser initiation systems,” Appl. Opt. 49(31), 6189–6195 (2010). [CrossRef]
  44. F. Ferioli, P. V. Puzinauskas, S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57(9), 1183–1189 (2003). [CrossRef] [PubMed]
  45. S. Joshi, D. B. Olsen, C. Dumitrescu, P. V. Puzinauskas, A. P. Yalin, “Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines,” Appl. Spectrosc. 63(5), 549–554 (2009). [CrossRef] [PubMed]
  46. N. Pavel, M. Tsunekane, T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited