OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A964–A969

Absorption enhancing proximity effects in aperiodic nanowire arrays

Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A964-A969 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the equivalent periodic array. We focus on the modes of such clusters and show that the reduced symmetry associated with cluster formation allows external coupling into modes which are dark in periodic arrays, thus increasing absorption. To exploit such modes fully, arrays must include tightly clustered NWs that are unlikely to arise from fabrication variations but must be created intentionally.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.0050) Diffraction and gratings : Diffraction and gratings
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: July 31, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 15, 2013
Published: September 26, 2013

Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke, "Absorption enhancing proximity effects in aperiodic nanowire arrays," Opt. Express 21, A964-A969 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. R. Catchpole, “Nanostructures in photovoltaics,” Phil. Trans. R. Soc. A 364, 3493–503 (2006). [CrossRef] [PubMed]
  2. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. R 62, 175–189 (2008). [CrossRef]
  3. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8, 2–6 (2008). [CrossRef]
  4. S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett. 12, 3682–3689 (2012). [CrossRef] [PubMed]
  5. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  6. C. Lin, M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009). [CrossRef] [PubMed]
  7. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, A1067–A1081 (2011). [CrossRef] [PubMed]
  8. K. Seo, Y. J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K. B. Crozier, “Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2Layer,” Nano 7, 5539–5545 (2013).
  9. D. B. Turner-Evans, C. T. Chen, H. Emmer, W. E. McMahon, H. A. Atwater, “Optoelectronic analysis of multijunction wire array solar cells,” J. Appl. Phys. 114, 014501 (2013). [CrossRef]
  10. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339, 1057–1060 (2013). [CrossRef] [PubMed]
  11. E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res. 41, 269–295 (2011). [CrossRef]
  12. M.-P. Lu, M.-Y. Lu, L.-J. Chen, “p-Type ZnO nanowires: From synthesis to nanoenergy,” Nano Energy 1, 247–258 (2012). [CrossRef]
  13. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19, 307–312 (2010). [CrossRef]
  14. H. Bao, X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photo-voltaic applications,” Opt. Lett. 35, 3378–3380 (2010). [CrossRef] [PubMed]
  15. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011). [CrossRef] [PubMed]
  16. C. Lin, M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19, A1148–A1154 (2011). [CrossRef] [PubMed]
  17. K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012). [CrossRef]
  18. W. Shockley, H. J. Queisser, “Detailed balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  19. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, C. Martijn de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited