OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A991–A996

InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting

Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, Yu-Tong Chen, S. J. Tu, M. L. Lee, and W. C. Lai  »View Author Affiliations


Optics Express, Vol. 21, Issue S6, pp. A991-A996 (2013)
http://dx.doi.org/10.1364/OE.21.00A991


View Full Text Article

Enhanced HTML    Acrobat PDF (1844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.

© 2013 Optical Society of America

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.4925) Thin films : Other properties (stress, chemical, etc.)
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Fuel

History
Original Manuscript: August 14, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 30, 2013
Published: October 9, 2013

Citation
Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, Yu-Tong Chen, S. J. Tu, M. L. Lee, and W. C. Lai, "InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting," Opt. Express 21, A991-A996 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S6-A991


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972). [CrossRef] [PubMed]
  2. W. J. Youngblood, S. H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, and T. E. Mallouk, “Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell,” J. Am. Chem. Soc.131(3), 926–927 (2009). [CrossRef] [PubMed]
  3. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, “An orthophosphate semiconductor with photooxidation properties under visible-light irradiation,” Nat. Mater.9(7), 559–564 (2010). [CrossRef] [PubMed]
  4. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007). [CrossRef]
  5. J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008). [CrossRef]
  6. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002). [CrossRef]
  7. K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007). [CrossRef]
  8. W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008). [CrossRef]
  9. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010). [CrossRef]
  10. M. Li, W. Luo, B. Liu, X. Zhao, Z. Li, D. Chen, T. Yu, Z. Xie, R. Zhang, and Z. Zou, “Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment,” Appl. Phys. Lett.99(11), 112108 (2011). [CrossRef]
  11. O. Khaselev and J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science280(5362), 425–427 (1998). [CrossRef] [PubMed]
  12. A. Currao, “Photoelectrochemical water splitting,” Chimia (Aarau)61(12), 815–819 (2007). [CrossRef]
  13. A. Siegel and T. Schott, “Optimization of photovoltaic hydrogen production,” Int. J. Hydrogen Energy13(11), 659–675 (1988). [CrossRef]
  14. M. L. Lee, J. K. Sheu, and C. C. Hu, “Non-alloyed Cr/Au Ohmic contacts to n-GaN,” Appl. Phys. Lett.91(18), 182106 (2007). [CrossRef]
  15. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, and C. C. Liu, “The indium tin oxide Ohmic contact to highly doped n-GaN,” Solid-State Electron.43(11), 2081–2084 (1999). [CrossRef]
  16. S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011). [CrossRef] [PubMed]
  17. S. Y. Liu, J. K. Sheu, M. L. Lee, Y. C. Lin, S. J. Tu, F. W. Huang, and W. C. Lai, “Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation,” Opt. Express20(S2Suppl 2), A190–A196 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited