OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S6 — Nov. 4, 2013
  • pp: A997–A1006

Resonant circuit model for efficient metamaterial absorber

Alexandre Sellier, Tatiana V. Teperik, and André de Lustrac  »View Author Affiliations

Optics Express, Vol. 21, Issue S6, pp. A997-A1006 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resonant absorption in a planar metamaterial is studied theoretically. We present a simple physical model describing this phenomenon in terms of equivalent resonant circuit. We discuss the role of radiative and dissipative damping of resonant mode supported by a metamaterial in the formation of absorption spectra. We show that the results of rigorous calculations of Maxwell equations can be fully retrieved with simple model describing the system in terms of equivalent resonant circuit. This simple model allows us to explain the total absorption effect observed in the system on a common physical ground by referring it to the impedance matching condition at the resonance.

© 2013 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials

ToC Category:
Subwavelength structures, nanostructures

Original Manuscript: July 17, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 26, 2013
Published: October 10, 2013

Alexandre Sellier, Tatiana V. Teperik, and André de Lustrac, "Resonant circuit model for efficient metamaterial absorber," Opt. Express 21, A997-A1006 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  2. B. Wang, T. Koschny, C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009). [CrossRef]
  3. Y. Cheng, H. Yang, Z. Cheng, B. Xiao, “A planar polarization-insensitive metamaterial absorber,” Photonics and Nanostructures Fundamentals and Applications 9, 8–14 (2011). [CrossRef]
  4. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011). [CrossRef] [PubMed]
  5. T. V. Teperik, F. J. García de Abajo, V. V. Popov, M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007). [CrossRef]
  6. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef] [PubMed]
  7. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010). [CrossRef]
  8. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, Hou-Tong, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Optics Lett. 37, 154–156 (2012). [CrossRef]
  9. S. Collin, F. Pardo, R. Teissier, J.-L. Pelouard, “Efficient light absorption in metalsemiconductormetal nanostructures,” Appl. Phys. Lett. 85, 194 (2004). [CrossRef]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef] [PubMed]
  12. K. B. Alici, A. B. Turhan, C. M. Soukoulis, E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19, 14260–14267 (2011). [CrossRef] [PubMed]
  13. M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  14. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef] [PubMed]
  15. T. Maier, H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35, 3766–3768 (2010). [CrossRef] [PubMed]
  16. G. Dayal, S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013). [CrossRef] [PubMed]
  17. T. V. Teperik, F. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008). [CrossRef]
  18. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13, 075005 (2011). [CrossRef]
  19. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011). [CrossRef] [PubMed]
  20. J. Yang, Z. Shen, “A thin and broadband absorber using double-square loops,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 6, 388–391 (2007). [CrossRef]
  21. A. F. Arya, M. Mishrikey, C. Hafner, R. Vahldieck, “Radar absorbers based on frequency selective surfaces on perforated substrates,” J. Computational Theoretical Nanosci. 5, 704–710 (2008). [CrossRef]
  22. A. Fallahi, A. Yahaghi, H.-R. Benedickter, H. Abiri, M. Shahabadi, C. Hafner, “Thin wideband radar absorbers,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 58, 4051–4058 (2010). [CrossRef]
  23. H. Oraizi, A. Abdolali, N. Vaseghi, “Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section,” Prog. Electromagn. Res. 101, 323–337 (2010). [CrossRef]
  24. R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, S. Matitsine, “Analysis and design of an ultra-thin metamaterial absorber,” Prog. Electromagn. Res. B 14, 407–429 (2009). [CrossRef]
  25. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  26. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61 (2002). [CrossRef] [PubMed]
  27. J. Hao, L. Zhou, M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011). [CrossRef]
  28. P. Bouchon, C. Koechlin, F. Pardo, R. Hadar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012). [CrossRef] [PubMed]
  29. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011). [CrossRef] [PubMed]
  30. H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18, 22187–22198 (2010). [CrossRef] [PubMed]
  31. W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102, 147–151 (2011). [CrossRef]
  32. W. Zhu, X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26, 2382–2385 (2009). [CrossRef]
  33. P. V. Tuong, V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, Y. P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Photonics and Nanostructures - Fundamentals and Applications 11, 89–94 (2013). [CrossRef]
  34. http://www.comsol.com .
  35. C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley & Sons, Inc., NY, 1997).
  36. T. V. Teperik, V. V. Popov, F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005). [CrossRef]
  37. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited