OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 12976–12986

An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses

Jun-Cheng Zhang, Chao-Nan Xu, Sunao Kamimura, Yujin Terasawa, Hiroshi Yamada, and Xusheng Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 12976-12986 (2013)
http://dx.doi.org/10.1364/OE.21.012976


View Full Text Article

Enhanced HTML    Acrobat PDF (2813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The elastico-mechanoluminescence (EML) properties of CaZnOS:Mn2+ are investigated. The CaZnOS:Mn2+/epoxy resin composite can simultaneously “feel” (sense) and “see” (image) various types of mechanical stress over a wide energy and frequency range (ultrasonic vibration, impact, friction and compression) as an intense red emission (610 nm) from Mn2+ ions. Further, the accurate linear relation between emission intensity and different stress parameters (intensity, energy and deformation rate) are confirmed. The EML mechanism is explained using a piezoelectrically induced trapped carrier excitation mode. All the results imply that CaZnOS:Mn2+ has potential as a stress probe to sense and image multiple mechanical stresses and decipher the stress intensity distribution.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(260.3800) Physical optics : Luminescence
(280.5475) Remote sensing and sensors : Pressure measurement

ToC Category:
Sensors

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 30, 2013
Manuscript Accepted: April 5, 2013
Published: May 20, 2013

Citation
Jun-Cheng Zhang, Chao-Nan Xu, Sunao Kamimura, Yujin Terasawa, Hiroshi Yamada, and Xusheng Wang, "An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses," Opt. Express 21, 12976-12986 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-12976


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. S. Wolfbeis, “Sensor paints,” Adv. Mater.20(19), 3759–3763 (2008). [CrossRef]
  2. V. Maheshwari and R. Saraf, “Tactile devices to sense touch on a par with a human finger,” Angew. Chem. Int. Ed. Engl.47(41), 7808–7826 (2008). [CrossRef] [PubMed]
  3. P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010). [CrossRef] [PubMed]
  4. H. Yousefa, M. Boukallela, and K. Althoeferb, “Tactile sensing for dexterous in-hand manipulation in robotics-A review,” Sens. Actuators A Phys.167(2), 171–187 (2011). [CrossRef]
  5. Y. Tadesse, S. Priya, H. Stephanou, D. Popa, and D. Hanson, “Piezoelectric actuation and sensing for facial robotics,” Ferroelectrics345(1), 13–25 (2006). [CrossRef]
  6. Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, F. Y. Chang, S. H. Chang, and K. C. Fan, “An integrated flexible temperature and tactile sensing array using PI-copper films,” Sens. Actuators A Phys.143(1), 143–153 (2008). [CrossRef]
  7. L. Ascari, P. Corradi, L. Beccai, and C. Laschi, “A miniaturized and flexible optoelectronic sensing system for tactile skin,” J. Micromech. Microeng.17(11), 2288–2298 (2007). [CrossRef]
  8. N. J. Ferrier and R. W. Brockett, “Reconstructing the shape of a deformable membrane from image data,” Int. J. Robot. Res.19(9), 795–816 (2000). [CrossRef]
  9. M. I. J. Stich, S. Nagl, O. S. Wolfbeis, U. Henne, and M. Schaeferling, “A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces,” Adv. Funct. Mater.18(9), 1399–1406 (2008). [CrossRef]
  10. V. Maheshwari and R. F. Saraf, “High-resolution thin-film device to sense texture by touch,” Science312(5779), 1501–1504 (2006). [CrossRef] [PubMed]
  11. Y. Sagara and T. Kato, “Mechanically induced luminescence changes in molecular assemblies,” Nat. Chem.1(8), 605–610 (2009). [CrossRef] [PubMed]
  12. Z. L. Wang, “Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,” Nano Today5(6), 540–552 (2010). [CrossRef]
  13. J. S. Kim, Y. N. Kwon, and K. S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater.51(20), 6437–6442 (2003). [CrossRef]
  14. J. S. Kim, Y. N. Kwon, N. Shin, and K. S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater.53(16), 4337–4343 (2005). [CrossRef]
  15. C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, and T. Watanabe, “Dynamic visualization of stress distribution mechanoluminescence image,” Appl. Phys. Lett.76(2), 179–181 (2000). [CrossRef]
  16. C. N. Xu, Smart Materials (Wiley, 2002), Vol.1.
  17. B. P. Chandra, Y. Rahangdale, M. Ramrakhiani, M. H. Aansari, and Y. K. Sharma, “Satatistical model of mechanoluminescence in crystals,” Cryst. Res. Technol.27(4), 561–568 (1992). [CrossRef]
  18. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett.74(17), 2414–2416 (1999). [CrossRef]
  19. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999). [CrossRef]
  20. M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light.,” Appl. Phys. Lett.75(17), 2548–2550 (1999). [CrossRef]
  21. X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005). [CrossRef]
  22. H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007). [CrossRef]
  23. H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008). [CrossRef]
  24. L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc.155(3), J63–J65 (2008). [CrossRef]
  25. H. W. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008). [CrossRef]
  26. S. Kamimura, H. Yamada, and C. N. Xu, “Development of new elasticoluminescent material SrMg2(PO4)2:Eu,” J. Lumin.132(2), 526–530 (2012). [CrossRef]
  27. L. Zhang, C. N. Xu, and H. Yamada, “Strong mechanoluminescence from oxynitridosilicate phosphors,” Mater. Sci. Eng.18(15), 212001 (2011).
  28. J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012). [CrossRef]
  29. C. Li, C. N. Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011). [CrossRef]
  30. X. Fu, H. Yamada, and C. N. Xu, “Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor,” J. Electrochem. Soc.156(9), J249–J252 (2009). [CrossRef]
  31. N. Terasaki and C. N. Xu, “Mechanoluminescence recording device integrated withphotosensitive material and europium-doped SrAl2O4,” Jpn. J. Appl. Phys.48(4), 04C150 (2009).
  32. T. Zhan, C. N. Xu, O. Fukuda, H. Yamada, and C. Li, “Direct visualization of ultrasonic power distribution using mechanoluminescent film,” Ultrason. Sonochem.18(1), 436–439 (2011). [CrossRef] [PubMed]
  33. K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc.89(11), 3413–3416 (2006). [CrossRef]
  34. C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Bandgap energy of SrGa2S4:Eu2+ and SrS:Eu2+,” Electrochem. Solid-State Lett.9(2), G53–G55 (2006). [CrossRef]
  35. X. Zhang, J. Zhang, J. Xu, and Q. Su, “Luminescent properties of Eu2+-activated SrLaGa3S6O phosphor,” J. Alloy. Comp.389(1–2), 247–251 (2005). [CrossRef]
  36. C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence properties of novel red-Emitting Mn2+-activated MZnOS (M=Ca,Ba) phosphors,” Chem. Mater.21(6), 1010–1016 (2009). [CrossRef]
  37. T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express18(8), 8187–8192 (2010). [CrossRef] [PubMed]
  38. T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express18(13S2), A231–A236 (2010). [CrossRef] [PubMed]
  39. N. M. Rao, D. R. Reddy, B. K. Reddy, and C. N. Xu, “Intense red mechanoluminescence from (ZnS)1-x(MnTe)x,” Phys. Lett. A372(22), 4122–4126 (2008). [CrossRef]
  40. T. Toriyi, Y. Adachi, H. Yamada, Y. Imai, and C. N. Xu, “Enhancement of mechanoluminescence from ZnS:Mn,Te by wet process,” Key Eng. Mater.388, 301–304 (2009). [CrossRef]
  41. A. Tiwari, S. A. Khan, R. S. Kher, M. Mehta, and S. J. Dhoble, “Effect of capping on the mechanoluminescence of γ-irradiated ZnS:Cu nanophosphors,” J. Lumin.131(6), 1172–1176 (2011). [CrossRef]
  42. S. A. Petrova, V. P. Mar’evich, R. G. Zakharov, E. N. Selivanov, V. M. Chumarev, and Y. L. Udoeva, “Crystal structure of zinc calcium oxysulfide,” Dokl. Chem.393(1–3), 255–258 (2003). [CrossRef]
  43. T. Sambrook, C. F. Smura, S. J. Clarke, K. M. Ok, and P. S. Halasyamani, “Structure and physical properties of the polar oxysulfide CaZnOS,” Inorg. Chem.46(7), 2571–2574 (2007). [CrossRef] [PubMed]
  44. D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009). [CrossRef] [PubMed]
  45. J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010). [CrossRef]
  46. W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).
  47. R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited