OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 12987–12995

Polarization distribution control of parallel femtosecond pulses with spatial light modulators

Satoshi Hasegawa and Yoshio Hayasaki  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 12987-12995 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A parallel femtosecond pulse irradiation method using a computer-generated hologram displayed on a spatial light modulator provides the advantages of high throughput and high energy-use efficiency. Polarization control of the femtosecond pulse enables some unique properties, for example, selective excitation of an anisotropic molecule, focusing at a size beyond the diffraction limit owing to the longitudinal vector component of a radially polarized beam focused by a high-numerical-aperture objective lens, and fabrication of periodic nanostructures with femtosecond laser light. In this study, we propose a parallel femtosecond laser irradiation system with arbitrary polarization distribution control using a pair of spatial light modulators. By using the system, the interval between the diffraction spots was the closest yet reported by avoiding mutual interference among their side lobes. The interval was improved to half compared with our previous work. We also demonstrated the parallel fabrication of periodic nanostructures with orientation control, which, to our knowledge, is the first reported demonstration of its kind.

© 2013 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization

ToC Category:
Ultrafast Optics

Original Manuscript: February 15, 2013
Revised Manuscript: May 9, 2013
Manuscript Accepted: May 9, 2013
Published: May 20, 2013

Satoshi Hasegawa and Yoshio Hayasaki, "Polarization distribution control of parallel femtosecond pulses with spatial light modulators," Opt. Express 21, 12987-12995 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994). [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett.65(14), 1850–1852 (1994). [CrossRef]
  3. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996). [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  6. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004). [CrossRef] [PubMed]
  7. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005). [CrossRef]
  8. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005). [CrossRef] [PubMed]
  9. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett.31(11), 1705–1707 (2006). [CrossRef] [PubMed]
  10. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt.46(23), 5917–5923 (2007). [CrossRef] [PubMed]
  11. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator,” Opt. Rev.14(4), 208–213 (2007). [CrossRef]
  12. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett.93(4), 041116 (2008). [CrossRef]
  13. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008). [CrossRef]
  14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009). [CrossRef] [PubMed]
  15. S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys.48(9), 09LE03 (2009). [CrossRef]
  16. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009). [CrossRef]
  17. S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett.36(15), 2943–2945 (2011). [CrossRef] [PubMed]
  18. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process.107(2), 357–362 (2012). [CrossRef]
  19. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys.111(8), 083107 (2012). [CrossRef]
  20. Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns,” Appl. Surf. Sci.258(19), 7601–7606 (2012). [CrossRef]
  21. G. Dearden, Z. Kuang, D. Liu, W. Perrie, S. P. Edwardson, and K. G. Watkins, “Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator,” Physics Procedia39, 650–660 (2012). [CrossRef]
  22. S. Hasegawa and Y. Hayasaki, “Nonlinear sharpening of holographically processed sub-microstructures,” Appl. Phys., A Mater. Sci. Process. (2012), doi:. [CrossRef]
  23. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express15(22), 14488–14497 (2007). [CrossRef] [PubMed]
  24. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express16(21), 16592–16599 (2008). [PubMed]
  25. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express18(11), 11754–11762 (2010). [CrossRef] [PubMed]
  26. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express18(16), 17193–17200 (2010). [CrossRef] [PubMed]
  27. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express2(11), 3167–3178 (2011). [CrossRef] [PubMed]
  28. Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012). [CrossRef] [PubMed]
  29. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009). [CrossRef] [PubMed]
  30. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys.48(12), 126507 (2009). [CrossRef]
  31. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express18(12), 12136–12143 (2010). [CrossRef] [PubMed]
  32. D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly (methyl methacrylate) for volume phase gratings,” Appl. Phys. (Berl.)101(4), 817–823 (2010). [CrossRef]
  33. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett.36(7), 1176–1178 (2011). [CrossRef] [PubMed]
  34. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophotonics3(10-11), 696–705 (2010). [CrossRef] [PubMed]
  35. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  36. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys.44(34), L1066–L1068 (2005). [CrossRef]
  37. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett.34(13), 1918–1920 (2009). [CrossRef] [PubMed]
  38. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D32(13), 1455–1461 (1999). [CrossRef]
  39. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007). [CrossRef]
  40. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18(10), 10828–10833 (2010). [CrossRef] [PubMed]
  41. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012). [CrossRef]
  42. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  43. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt.33(29), 6879–6884 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited