OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13068–13074

A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of metals in air and in vacuum

O. Benavides, L. de la Cruz May, and A. Flores Gil  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13068-13074 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of aluminum in air and in vacuum under the same other experimental conditions is performed. We find that, hemispherical total reflectivity of aluminum undergoes a sharp drop at the plasma formation threshold both in the air and in vacuum. The initial large value (0.8) of aluminum reflectivity decreases to a level of about 0.14 and 0.24 for ablation in the air and in vacuum, respectively. These decreased reflectivity values remain virtually unchanged with further increasing laser fluence. The reflectivity drop in the air is observed to be sharper than in vacuum. Our study indicates that the reflectivity drop is predominantly caused by absorption of the laser light in plasma. Nano/micro-structural defects present on practical sample surfaces play the important role in the plasma formation, especially for the ablation in the air, where the plasma formation threshold is found to be by a factor of 3 smaller than in vacuum.

© 2013 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(140.3390) Lasers and laser optics : Laser materials processing
(160.0160) Materials : Materials
(160.3900) Materials : Metals
(240.0240) Optics at surfaces : Optics at surfaces

ToC Category:

Original Manuscript: April 15, 2013
Revised Manuscript: May 13, 2013
Manuscript Accepted: May 13, 2013
Published: May 20, 2013

O. Benavides, L. de la Cruz May, and A. Flores Gil, "A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of metals in air and in vacuum," Opt. Express 21, 13068-13074 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. R. Phipps, ed., Laser Ablation and Its Applications (Springer, 2007).
  2. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys.109(2), 021101 (2011). [CrossRef]
  3. R. Eason, ed., Pulsed Laser Deposition of Thin Films (Wiley, 2007).
  4. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing – State of the art and challenges,” CIRP Annals Manufacturing Technology60(2), 735–755 (2011). [CrossRef]
  5. S. C. Singh and H. Zeng, “Nanomaterials and nanopartterns based on laser processing: A brief review on current state of art,” Sci. Adv. Mater.4(3), 368–390 (2012). [CrossRef]
  6. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shil, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process.79(4–6), 1603–1606 (2004). [CrossRef]
  7. V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006). [CrossRef]
  8. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express18(10), 10188–10199 (2010). [CrossRef] [PubMed]
  9. A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process.95(2), 447–452 (2009). [CrossRef]
  10. N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process.98(2), 393–400 (2010). [CrossRef]
  11. A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process.77(2), 277–284 (2003).
  12. A. Kurella and N. B. Dahotre, “Review paper: Surface modification for bioimplants: The role of laser surface engineering,” J. Biomater. Appl.20(1), 5–50 (2005). [CrossRef] [PubMed]
  13. J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys.93(6), 3627–3634 (2003). [CrossRef]
  14. S. G. Gorny, G. V. Odintsova, A. V. Otkeeva, and V. P. Veiko, “Laser induced multicolor image formation on metal,” Proc. SPIE7996, 799605, 799605-7 (2010). [CrossRef]
  15. J.-Y. Cheng, M.-H. Yen, C.-W. Wei, Y.-C. Chuang, and T.-H. Young, “Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip,” J. Micromech. Microeng.15(6), 1147–1156 (2005). [CrossRef]
  16. G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012). [CrossRef]
  17. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005). [CrossRef]
  18. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008). [CrossRef]
  19. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev.7(3), 385–407 (2013). [CrossRef]
  20. B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys.112(9), 093303 (2012). [CrossRef]
  21. S. Amoruso, J. Schou, and J. G. Lunney, “Energy balance of a laser ablation plume expanding in a background gas,” Appl. Phys., A Mater. Sci. Process.101(1), 209–214 (2010). [CrossRef]
  22. N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys.13(1), 1581–1582 (1969).
  23. T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett.26(4), 165–168 (1975). [CrossRef]
  24. Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys.22(7), 901–902 (1977).
  25. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).
  26. S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas,” J. Appl. Phys.101(2), 023115 (2007). [CrossRef]
  27. A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron.15(4), 490–493 (1985). [CrossRef]
  28. A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys.110(4), 043102 (2011). [CrossRef]
  29. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process.82(2), 357–362 (2006). [CrossRef]
  30. S. Proyer and E. Stangle, “Time-integrated photography of laser-induced plumes,” Appl. Phys., A Mater. Sci. Process.60(6), 573–580 (1995). [CrossRef]
  31. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).
  32. C. T. Walters, R. H. Barns, and R. E. Beverly, “Initiation of laser-supported-detonation (LSD) waves,” J. Appl. Phys.49(5), 2937–2949 (1978). [CrossRef]
  33. S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys.110(3), 034310 (2011). [CrossRef]
  34. N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process.92(4), 883–889 (2008). [CrossRef]
  35. M. N. Libenson, G. S. Romanov, and Ya. A. Imas, “Temperature dependence of the optical constants of a metal in heating by laser radiation,” Sov. Phys. Tech. Phys.13(7), 925–927 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited