OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13094–13104

Phase locking of multiple optical fiber channels for a slow-light-enabled laser radar system

Joseph E. Vornehm, Aaron Schweinsberg, Zhimin Shi, Daniel J. Gauthier, and Robert W. Boyd  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13094-13104 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase control is crucial to the operation of coherent beam combining systems, whether for laser radar or high-power beam combining. We have recently demonstrated a design for a multi-aperture, coherently combined, synchronized- and phased-array slow light laser radar (SLIDAR) that is capable of scanning in two dimensions with dynamic group delay compensation. Here we describe in detail the optical phase locking system used in the design. The phase locking system achieves an estimated Strehl ratio of 0.8, and signals from multiple emitting apertures are phase locked simultaneously to within π/5 radians (1/10 wave) after propagation through 2.2 km of single-mode fiber per channel. Phase locking performance is maintained even as two independent slow light mechanisms are utilized simultaneously.

© 2013 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(280.3640) Remote sensing and sensors : Lidar
(290.5900) Scattering : Scattering, stimulated Brillouin
(140.3298) Lasers and laser optics : Laser beam combining
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 3, 2013
Revised Manuscript: May 9, 2013
Manuscript Accepted: May 14, 2013
Published: May 21, 2013

Joseph E. Vornehm, Aaron Schweinsberg, Zhimin Shi, Daniel J. Gauthier, and Robert W. Boyd, "Phase locking of multiple optical fiber channels for a slow-light-enabled laser radar system," Opt. Express 21, 13094-13104 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Nabors, “Effects of phase errors on coherent emitter arrays,” Appl. Opt.33, 2284–2289 (1994). [CrossRef] [PubMed]
  2. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett.29, 474–476 (2004). [CrossRef] [PubMed]
  3. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005). [CrossRef]
  4. N. J. Miller, M. P. Dierking, and B. D. Duncan, “Optical sparse aperture imaging,” Appl. Opt.46, 5933–5943 (2007). [CrossRef] [PubMed]
  5. W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, “Coherent beam combining with multilevel optical phase-locked loops,” J. Opt. Soc. Am. B24, 2930–2939 (2007). [CrossRef]
  6. W. Liang, A. Yariv, A. Kewitsch, and G. Rakuljic, “Coherent combining of the output of two semiconductor lasers using optical phase-lock loops,” Opt. Lett.32, 370–372 (2007). [CrossRef] [PubMed]
  7. P. F. McManamon, “Review of ladar: A historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng.51, 060901 (2012). [CrossRef]
  8. A. Schweinsberg, Z. Shi, J. E. Vornehm, and R. W. Boyd, “Demonstration of a slow-light laser radar,” Opt. Express19, 15760–15769 (2011). [CrossRef] [PubMed]
  9. A. Schweinsberg, Z. Shi, J. E. Vornehm, and R. W. Boyd, “A slow-light laser radar system with two-dimensional scanning,” Opt. Lett.37, 329–331 (2012). [CrossRef] [PubMed]
  10. Z. Shi, A. Schweinsberg, J. E. Vornehm, and R. W. Boyd, “A slow-light laser radar (SLIDAR),” Opt. Photon. News23, 51–51 (2012). [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London)397, 594–598 (1999). [CrossRef]
  12. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science301, 200–202 (2003). [CrossRef] [PubMed]
  13. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express14, 1395–1400 (2006). [CrossRef] [PubMed]
  14. B. Zhang, L. Zhang, L.-S. Yan, I. Fazal, J. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express15, 8317–8322 (2007). [CrossRef] [PubMed]
  15. F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett.19, 1145–1147 (2007). [CrossRef]
  16. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007). [CrossRef] [PubMed]
  17. Y. Okawachi, R. Salem, and A. L. Gaeta, “Continuous tunable delays at 10-Gb/s data rates using self-phase modulation and dispersion,” J. Lightwave Technol.25, 3710–3715 (2007). [CrossRef]
  18. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol.25, 201–206 (2007). [CrossRef]
  19. Z. Shi, A. Schweinsberg, J. E. Vornehm, M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A374, 4071–4074 (2010). [CrossRef]
  20. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (Invited),” J. Opt. Soc. Am. B24, 1707–1715 (2007). [CrossRef]
  21. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron.15, 248–256 (2009). [CrossRef]
  22. A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum.79, 013104 (2008). [CrossRef] [PubMed]
  23. T. M. Shay and V. Benham, “First experimental demonstration of phase locking of optical fiber arrays by RF phase modulation,” Proc. SPIE5550, 313–319 (2004). [CrossRef]
  24. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. J. Nelson, and C. A. Lu, “First experimental demonstration of self-synchronous phase locking of an optical array,” Opt. Express14, 12015–12021 (2006). [CrossRef] [PubMed]
  25. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett.22, 907–909 (1997). [CrossRef] [PubMed]
  26. L. Liu and M. A. Vorontsov, “Phase-locking of tiled fiber array using SPGD feedback controller,” Proc. SPIE5895, 58950P (2005). [CrossRef]
  27. X. Wang, P. Zhou, Y. Ma, J. Leng, X. Xu, and Z. Liu, “Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm,” Opt. Lett.36, 3121–3123 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (485 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited