OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13118–13124

ASE and parasitic lasing in thin disk laser with anti-ASE cap

Hiroaki Furuse, Haik Chosrowjan, Junji Kawanaka, Noriaki Miyanaga, Masayuki Fujita, and Yasukazu Izawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13118-13124 (2013)
http://dx.doi.org/10.1364/OE.21.013118


View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The amplified spontaneous emission (ASE) and parasitic lasing (PL) effects in thin disk laser with an anti-ASE cap have been investigated in detail by measuring both time-resolved radiated intensity at longer axis of elliptical pump profile (dominant ASE direction) and small signal gain (SSG) in laser amplifier. A cryogenically-cooled total-reflection active-mirror laser consisting of 9.8 at.% doped, 0.6-mm thick Yb:YAG and un-doped YAG trapezoidal ceramics cap was used as a sample. The phased transitions from spontaneous emission (SE) to ASE and from ASE to PL have been unambiguously observed. For several pump beam diameters, the ASE gain parameter g0lASE at ASE threshold was about 3, and the SSG coefficient was down to about 65% until PL started. To the best of our knowledge, this is the first quantitative characterization of the ASE/PL effects in the thin disk laser with an anti-ASE cap.

© 2013 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 25, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 16, 2013
Published: May 21, 2013

Citation
Hiroaki Furuse, Haik Chosrowjan, Junji Kawanaka, Noriaki Miyanaga, Masayuki Fujita, and Yasukazu Izawa, "ASE and parasitic lasing in thin disk laser with anti-ASE cap," Opt. Express 21, 13118-13124 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state-lasers,” Appl. Phys. B58(5), 365–372 (1994). [CrossRef]
  2. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007). [CrossRef]
  3. D. Harvilla and R. Brockmann, “Latest advances in high power disk lasers,” Proc. SPIE7578, 75780C (2010). [CrossRef]
  4. J. Speiser, “Scaling of thin-disk lasers – influence of amplified spontaneous emission,” J. Opt. Soc. Am. B26(1), 26–35 (2009). [CrossRef]
  5. G. I. Peters and L. Allen, “Amplified Spontaneous Emission 0.1. Threshold Condition,” J. Phys. A4(2), 238–243 (1971). [CrossRef]
  6. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A8(4), 2031–2047 (1973). [CrossRef]
  7. R. J. Beach, E. C. Honea, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scalable thin-disk laser,” U.S. patent 6,347,109 (12 February 2002).
  8. T. J. Carrig and A. K. Hankla, “Lasers and amplifiers based on hybrid slab active mirrors,” U.S. patent 6,658,036 (2 December 2003).
  9. D. Kouznetsov and J. F. Bisson, “Role of undoped cap in scaling of thin-disk lasers,” J. Opt. Soc. Am. B25(3), 338–345 (2008). [CrossRef]
  10. D. Albach, J. C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express17(5), 3792–3801 (2009). [CrossRef] [PubMed]
  11. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012). [CrossRef] [PubMed]
  12. D. C. Brown, High-Peak-Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).
  13. D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009). [CrossRef]
  14. P. Peterson, A. Gavrielides, T. C. Newell, N. Vretenar, and W. P. Latham, “ASE in thin disk lasers: theory and experiment,” Opt. Express19(25), 25672–25684 (2011). [CrossRef] [PubMed]
  15. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett.34(21), 3439–3441 (2009). [CrossRef] [PubMed]
  16. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010). [CrossRef]
  17. H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012). [CrossRef] [PubMed]
  18. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  19. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. Bigot, Y. W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” J. Quantum Electron.45(8), 993–1005 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited