OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13145–13161

Nonlinear Digital Back Propagation compensator for coherent optical OFDM based on factorizing the Volterra Series Transfer Function

Gal Shulkind and Moshe Nazarathy  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13145-13161 (2013)
http://dx.doi.org/10.1364/OE.21.013145


View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce an efficient and accurate nonlinear compensator (NLC) for digital back-propagation (DBP) of coherent optical OFDM receivers, based on a factorization procedure for the Volterra Series Transfer Function (VSTF) with 3N degrees of freedom for N frequency samples. The O(N2) nonlinear compensation complexity of generic Volterra evaluation (normalized per-subcarrier) is reduced to 28 + 6logN. Our analysis and simulations indicate that this NLC system outperforms previous VSTF-based non-linear compensation methods. Compared to a most recent VSTF-based method, the new method incurs 52% extra computational complexity in return for improved nonlinear tolerance of ~2 dB for the particular analyzed link.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 14, 2013
Revised Manuscript: March 11, 2013
Manuscript Accepted: May 6, 2013
Published: May 21, 2013

Citation
Gal Shulkind and Moshe Nazarathy, "Nonlinear Digital Back Propagation compensator for coherent optical OFDM based on factorizing the Volterra Series Transfer Function," Opt. Express 21, 13145-13161 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008). [CrossRef] [PubMed]
  2. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  3. E. Ip, N. Bai, and T. Wang, “Complexity versus performance tradeoff for fiber nonlinearity compensation using frequency-shaped, multi-subband backpropagation,” in OFC/NFOEC - Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, (2011). [CrossRef]
  4. E. F. Mateo, F. Yaman, T. Wang, and G. Li, “Nonlinearity compensation using digital backward propagation,” J. Lightwave Technol.1, 10–11 (2011).
  5. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express19(10), 9453–9460 (2011). [CrossRef] [PubMed]
  6. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (John Wiley and Sons Inc., 1980).
  7. A. Bononi, P. Serena, N. Rossi, E. Grellier, and F. Vacondio, “Modeling nonlinearity in coherent intrachannel-four-wave-mixing,” Opt. Express20, 3416–3425 (2012). [CrossRef] [PubMed]
  8. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol.30(10), 1524–1539 (2012). [CrossRef]
  9. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express18(18), 19039–19054 (2010). [CrossRef] [PubMed]
  10. A. Mecozzi, R. Essiambre, and S. Member, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol.30(12), 2011–2024 (2012). [CrossRef]
  11. C. Xia and W. Rosenkranz, “Nonlinear electrical equalization for different modulation formats with optical filtering,” J. Lightwave Technol.25(4), 996–1001 (2007). [CrossRef]
  12. Z. Pan, C. Benoit, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK Fiber Optic Communication Systems,” in OFC/NFOEC - Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, (2011). [CrossRef]
  13. K. Peddanarappagari and M. Brandt-Pearce, “Volterra Series transfer function of single-mode fibers,” J. Lightwave Technol.15(12), 2232–2241 (1997). [CrossRef]
  14. B. Xu, M. Brandt-pearce, and S. Member, “Comparison of FWM- and XPM-induced crosstalk using the Volterra series transfer function method,” J. Lightwave Technol.21(1), 40–53 (2003). [CrossRef]
  15. T. Freckmann, C. V. Gonzalez, and J. M. R.-C. Crespo, “Joint electronic dispersion compensation for DQPSK,” in OFC/NFOEC - Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, (2008). [CrossRef]
  16. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express16(20), 15777–15810 (2008). [CrossRef] [PubMed]
  17. R. Weidenfeld, M. Nazarathy, R. Noe, and I. Shpantzer, “Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback,” in European Conference of Optical Communication (ECOC), 1–2, (2009).
  18. R. Weidenfeld, M. Nazarathy, R. Noe, and I. Shpantzer, “Volterra nonlinear compensation of 100G coherent OFDM with baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation,” in OFC/NFOEC - Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, (2010). [CrossRef]
  19. S. Kumar, Impact of Nonlinearities on Fiber Optic Communications (Springer, 2011), Chap. 3.
  20. L. B. Du and A. J. Lowery, “Improved nonlinearity precompensation for long-haul high-data-rate transmission using coherent optical OFDM,” Opt. Express16(24), 19920–19925 (2008). [CrossRef] [PubMed]
  21. J. D. Reis and A. L. Teixeira, “Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series,” Opt. Express18(8), 8660–8670 (2010). [CrossRef] [PubMed]
  22. F. P. Guiomar, J. D. Reis, S. Member, A. L. Teixeira, A. N. Pinto, and S. Member, “Digital Postcompensation Using Volterra Series Transfer Function,” Photon. Technol. Lett.23(19), 1412–1414 (2011). [CrossRef]
  23. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express20(2), 1360–1369 (2012). [CrossRef] [PubMed]
  24. H.-M. Chin, F. Marco, and M. Jonas, “Volterra Based Nonlinear Compensation on 224 Gb/s PolMux-16QAM Optical Fibre Link,” in OFC/NFOEC - Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, (2012). [CrossRef]
  25. L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Electronic Nonlinearity Compensation of 256Gb / s PDM- 16QAM Based on Inverse Volterra Transfer Function,” in European Conference of Optical Communication (ECOC), 25–27, (2011).
  26. L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by Inverse Volterra Series Transfer Function,” J. Lightwave Technol.30(3), 310–316 (2012). [CrossRef]
  27. G. Shulkind and M. Nazarathy, “Estimating the Volterra series transfer function over coherent optical OFDM for efficient monitoring of the fiber channel nonlinearity,” Opt. Express20(27), 29035–29062 (2012). [CrossRef] [PubMed]
  28. G. Shulkind and M. Nazarathy, “An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization,” Opt. Express20(23), 25884–25901 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited