OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13256–13271

Bi-material terahertz sensors using metamaterial structures

Fabio Alves, Dragoslav Grbovic, Brian Kearney, Nickolay V. Lavrik, and Gamani Karunasiri  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13256-13271 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we report on the design, fabrication and characterization of terahertz (THz) bi-material sensors with metamaterial absorbers. MEMS fabrication-friendly SiOx and Al are used to maximize the bimetallic effect and metamaterial absorption at 3.8 THz, the frequency of a quantum cascade laser illumination source. Sensors with different configurations were fabricated and the measured absorption is near 100% and responsivity is around 1.2 deg/μW, which agree well with finite element simulations. The results indicate the potential of using these detectors to fabricate focal plane arrays for real time THz imaging.

© 2013 OSA

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: December 12, 2012
Revised Manuscript: January 25, 2013
Manuscript Accepted: February 24, 2013
Published: May 23, 2013

Fabio Alves, Dragoslav Grbovic, Brian Kearney, Nickolay V. Lavrik, and Gamani Karunasiri, "Bi-material terahertz sensors using metamaterial structures," Opt. Express 21, 13256-13271 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  2. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006). [CrossRef]
  3. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008). [CrossRef] [PubMed]
  4. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004). [CrossRef]
  5. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003). [CrossRef] [PubMed]
  6. A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006). [CrossRef]
  7. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008). [CrossRef] [PubMed]
  8. D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008). [CrossRef]
  9. B. Su and G. Duan, “A High sensitivity THz detector,” Proc. SPIE8195, 81951K (2011). [CrossRef]
  10. X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).
  11. G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).
  12. J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008). [CrossRef]
  13. S. Timoshenko, “Analysis of bi-metal thermostat,” J. Opt. Soc. Am.11(3), 233–255 (1925). [CrossRef]
  14. J. A. Harkey and T. W. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” J. Microelectromech. Syst.9(2), 226–235 (2000). [CrossRef]
  15. S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003). [CrossRef]
  16. J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004). [CrossRef]
  17. Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007). [CrossRef]
  18. T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation,” J. Opt. Soc. Am. A26(11), 2353–2361 (2009). [CrossRef] [PubMed]
  19. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999). [CrossRef]
  20. S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007). [CrossRef]
  21. Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002). [CrossRef]
  22. F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007). [CrossRef]
  23. H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011). [CrossRef]
  24. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011). [CrossRef] [PubMed]
  25. H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011). [CrossRef]
  26. H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and Terahertz wave sensing with metamaterials,” Opt. Express19(22), 21620–21626 (2011). [CrossRef] [PubMed]
  27. F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012). [CrossRef]
  28. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bi-material Terahertz Sensor with Integrated Metamaterial Absorber,” Opt. Lett.37(11), 1886–1888 (2012). [CrossRef] [PubMed]
  29. Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007). [CrossRef]
  30. P. W. Kruse, “Uncooled Infrared Imaging Arrays and Systems,” in Semiconductors and Semimetals47: Uncooled Infrared Imaging Arrays and Systems, P. W. Kruse and D.D. Skatrud, ed. (Academic Press, 1997).
  31. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004). [CrossRef]
  32. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).
  33. P. W. Kruse, Uncooled Thermal Imaging, Arrays Systems and Applications (SPIE Press, 2002).
  34. Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001). [CrossRef]
  35. D. Briggs, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (personal communication, 2012).
  36. B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013). [CrossRef]
  37. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  38. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012). [CrossRef] [PubMed]
  39. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009). [CrossRef] [PubMed]
  40. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010). [CrossRef]
  41. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010). [CrossRef] [PubMed]
  42. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009). [CrossRef] [PubMed]
  43. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011). [CrossRef]
  44. S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3481 KB)     
» Media 2: MOV (3717 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited