OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13279–13292

Cross-band relative absorption technique for the measurement of molecular mixing ratios

Narasimha S. Prasad and Denis Pliutau  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13279-13292 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new method for the measurement of molecular mixing ratios called Cross-Band Relative Absorption (CoBRA). The proposed method is based on relative measurements in different molecular bands referenced to a band of O2 with properly selected wavelength combinations providing high level of cancelation in temperature sensitivities. The CoBRA approach is particularly promising for satellite based remote sensing of molecular mixing ratios of the atmospheric trace gases. Very low temperature sensitivities and the potential of achieving close weighting function matching for the measurement and reference wavelengths are the main advantages of the method. The effectiveness of CoBRA approach is demonstrated for the retrieval of CO2 mixing ratios (XCO2) with application to the ASCENDS mission.

© 2013 OSA

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6360) Spectroscopy : Spectroscopy, laser
(010.1030) Atmospheric and oceanic optics : Absorption
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: December 10, 2012
Revised Manuscript: March 20, 2013
Manuscript Accepted: March 21, 2013
Published: May 24, 2013

Narasimha S. Prasad and Denis Pliutau, "Cross-band relative absorption technique for the measurement of molecular mixing ratios," Opt. Express 21, 13279-13292 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: sensitivity analysis,” Appl. Phys. B90(3-4), 593–608 (2008). [CrossRef]
  2. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.,” Appl. Opt.48(28), 5413–5422 (2009). [CrossRef] [PubMed]
  3. “Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Mission”, NASA Science Definition and Planning Workshop, Report, Univ. of Michigan, Ann Arbor, MI, 23–25 July, 2008.
  4. D. Pliutau and N. Prasad, “Simulation studies for comparative evaluation of alternative spectral regions for the sensing of CO2 and O2 suitable for the ASCENDS Mission,” Proc. SPIE8513, 851309, 851309-13 (2012). [CrossRef]
  5. E. Dufour and F.-M. Bréon, “Spaceborne Estimate of Atmospheric CO2 Column by Use of the Differential Absorption Method: Error Analysis,” Appl. Opt.42(18), 3595–3609 (2003). [CrossRef] [PubMed]
  6. D. Pliutau, and N. Prasad, “Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios”, (submitted to the SPIE Defense Security and Sensing 2013).
  7. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quantum Spectros. Radiative. Transf.110(9-10), 533–572 (2009). [CrossRef]
  8. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quantum Spectros. Radiative. Transf.91(2), 233–244 (2005). [CrossRef]
  9. M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J. Joiner, R. D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C. R. Redder, R. Reichle, F. R. Robertson, A. G. Ruddick, M. Sienkiewicz, and J. Woollen, “MERRA - NASA's Modern-Era Retrospective Analysis for Research and Applications,” J. Clim.24(14), 3624–3648 (2011). [CrossRef]
  10. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE4893, 466539 (2003).
  11. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the space shuttle,” Appl. Opt.17(4), 624–630 (1978). [CrossRef] [PubMed]
  12. Ed Browell et al, “CO2 Integrated Path Differentical Absorption (IPDA) Weighting Functions”, ASCENDS OSSE Workshop, NASA GSFC, April 18–20, 2011.
  13. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular database and HAWKS (HITRAN atmospheric workstation) 1996 edition,” J. Quantum Spectros. Radiative. Transf.60(5), 665–710 (1998). [CrossRef]
  14. File specification for MERRA products”, Version 2.2, Global Modeling and Assimilation Office, 9/1/2011 http://gmao.gsfc.nasa.gov
  15. D. Pliutau and N. S. Prasad, “Simulation framework to estimate the performance of CO2 and O2 sensing from space and airborne platforms for the ASCENDS mission requirements analysis,” Proc. SPIE8379, 83790K, 83790K-14 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited