OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13333–13341

Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip

Alessia Pasquazi, Lucia Caspani, Marco Peccianti, Matteo Clerici, Marcello Ferrera, Luca Razzari, David Duchesne, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13333-13341 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of “shutting down”, i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3948) Lasers and laser optics : Microcavity devices
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Integrated Optics

Original Manuscript: March 19, 2013
Revised Manuscript: May 6, 2013
Manuscript Accepted: May 16, 2013
Published: May 24, 2013

Alessia Pasquazi, Lucia Caspani, Marco Peccianti, Matteo Clerici, Marcello Ferrera, Luca Razzari, David Duchesne, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti, "Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip," Opt. Express 21, 13333-13341 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R.  Holzwarth, T.  Udem, T. W.  Hansch, J. C.  Knight, W. J.  Wadsworth, P. S.  Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  2. D. J.  Jones, S. A.  Diddams, J. K.  Ranka, A.  Stentz, R. S.  Windeler, J. L.  Hall, S. T.  Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  3. T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]
  4. S.  Cundiff J.  Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  5. Z.  Jiang, C.-B.  Huang, D. E.  Leaird, A. M.  Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  6. S. T.  Cundiff A. M.  Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010). [CrossRef]
  7. P.  Del’Haye, A.  Schliesser, O.  Arcizet, T.  Wilken, R.  Holzwarth, T. J.  Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  8. I. S.  Grudinin, N.  Yu, L.  Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009). [CrossRef] [PubMed]
  9. P.  Del’Haye, O.  Arcizet, A.  Schliesser, R.  Holzwarth, T. J.  Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008). [CrossRef] [PubMed]
  10. T. J.  Kippenberg, R.  Holzwarth, S. A.  Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]
  11. A. A.  Savchenkov, A. B.  Matsko, V. S.  Ilchenko, I.  Solomatine, D.  Seidel, L.  Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008). [CrossRef] [PubMed]
  12. P.  Del’Haye, T.  Herr, E.  Gavartin, M. L.  Gorodetsky, R.  Holzwarth, T. J.  Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011). [CrossRef] [PubMed]
  13. J. S.  Levy, A.  Gondarenko, M. A.  Foster, A. C.  Turner-Foster, A. L.  Gaeta, M.  Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  14. L.  Razzari, D.  Duchesne, M.  Ferrera, R.  Morandotti, S. T.  Chu, B. E.  Little, D. J.  Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  15. F.  Ferdous, H.  Miao, D. E.  Leaird, K.  Srinivasan, J.  Wang, L.  Chen, L. T.  Varghese, A. M.  Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011). [CrossRef]
  16. F.  Ferdous, H.  Miao, P.-H.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012). [CrossRef] [PubMed]
  17. T.  Herr, K.  Hartinger, J.  Riemensberger, C. Y.  Wang, E.  Gavartin, R.  Holzwarth, M. L.  Gorodetsky, T. J.  Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012). [CrossRef]
  18. P. H.  Wang, F.  Ferdous, H.  Miao, J.  Wang, D. E.  Leaird, K.  Srinivasan, L.  Chen, V.  Aksyuk, A. M.  Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20(28), 29284–29295 (2012). [CrossRef] [PubMed]
  19. S.  Coen, H. G.  Randle, T.  Sylvestre, M.  Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38(1), 37–39 (2013). [CrossRef] [PubMed]
  20. A. B.  Matsko, A. A.  Savchenkov, W.  Liang, V. S.  Ilchenko, D.  Seidel, L.  Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36(15), 2845–2847 (2011). [CrossRef] [PubMed]
  21. F.  Leo, S.  Coen, P.  Kockaert, S.-P.  Gorza, Ph.  Emplit, M.  Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4(7), 471–476 (2010). [CrossRef]
  22. A. B.  Matsko, A. A.  Savchenkov, L.  Maleki, “On excitation of breather solitons in an optical microresonator,” Opt. Lett. 37(23), 4856–4858 (2012). [CrossRef] [PubMed]
  23. T.  Carmon, L.  Yang, K.  Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  24. M.  Peccianti, A.  Pasquazi, Y.  Park, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun 3, 765 (2012). [CrossRef] [PubMed]
  25. P.  Grelu N.  Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
  26. A.  Pasquazi, M.  Peccianti, B. E.  Little, S. T.  Chu, D. J.  Moss, R.  Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012). [CrossRef] [PubMed]
  27. L. Caspani, M. Peccianti, A. Pasquazi, M. Clerici, R. Luca, B. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked low threshold OPO in a CMOS-compatible microring resonator,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2M.2. [CrossRef]
  28. M.  Ferrera, L.  Razzari, D.  Duchesne, R.  Morandotti, Z.  Yang, M.  Liscidini, J. E.  Sipe, S. T.  Chu, B. E.  Little, D. J.  Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  29. M.  Ferrera, D.  Duchesne, L.  Razzari, M.  Peccianti, R.  Morandotti, P.  Cheben, S.  Janz, D. X.  Xu, B. E.  Little, S.  Chu, D. J.  Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17(16), 14098–14103 (2009). [CrossRef] [PubMed]
  30. A.  Pasquazi, R.  Ahmad, M.  Rochette, M.  Lamont, B. E.  Little, S. T.  Chu, R.  Morandotti, D. J.  Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010). [CrossRef] [PubMed]
  31. C.  Lee, S. T.  Chu, B. E.  Little, J.  Bland-Hawthorn, S.  Leon-Saval, “Portable frequency combs for optical frequency metrology,” Opt. Express 20(15), 16671–16676 (2012). [CrossRef]
  32. P.  Del’Haye, S. B.  Papp, S. A.  Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109(26), 263901 (2012). [CrossRef] [PubMed]
  33. H.  Benisty N.  Piskunov, “Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime,” Appl. Phys. Lett. 102(15), 151107 (2013). [CrossRef]
  34. A.  Haboucha, H.  Leblond, M.  Salhi, A.  Komarov, F.  Sanchez, “Analysis of soliton pattern formation in passively mode-locked fibre lasers,” Phys. Rev. A 78(4), 043806 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited