OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13380–13385

High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect

Xianping Wang, Cheng Yin, Jingjing Sun, Honggen Li, Yang Wang, Maowu Ran, and Zhuangqi Cao  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13380-13385 (2013)
http://dx.doi.org/10.1364/OE.21.013380


View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-sensitivity temperature sensor based on the enhanced Goos-Hänchen effect in a symmetrical metal-cladding waveguide is theoretically proposed and experimentally demonstrated. Owing to the high sensitivity of the ultrahigh-order modes, any minute variation of the refractive index and thickness in the guiding layer induced by the thermo-optic and thermal expansion effects will easily give rise to a dramatic change in the position of the reflected light. In our experiment, a series of Goos-Hänchen shifts are measured at temperatures varying from 50.0 °C to 51.2 °C with a step of 0.2 °C. The sensor exhibits a good linearity and a high resolution of approximately 5 × 10-3 oC. Moreover, there is no need to employ any complicated optical equipment and servo techniques, since our transduction scheme is irrelevant to the light source fluctuation.

© 2013 OSA

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(130.6010) Integrated optics : Sensors
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Sensors

History
Original Manuscript: March 8, 2013
Revised Manuscript: May 1, 2013
Manuscript Accepted: May 1, 2013
Published: May 24, 2013

Citation
Xianping Wang, Cheng Yin, Jingjing Sun, Honggen Li, Yang Wang, Maowu Ran, and Zhuangqi Cao, "High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect," Opt. Express 21, 13380-13385 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13380


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express18(9), 9071–9075 (2010). [CrossRef] [PubMed]
  2. M. I. Lapsley, S. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett.95(8), 083507 (2009). [CrossRef]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  4. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett.103(5), 053901 (2009). [CrossRef] [PubMed]
  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  6. S. Herminghaus and P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett.58(4), 352–354 (1991). [CrossRef]
  7. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  8. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011). [CrossRef] [PubMed]
  9. H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement,” Opt. Commun.241(4-6), 409–418 (2004). [CrossRef]
  10. C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt.46(22), 5347–5351 (2007). [CrossRef] [PubMed]
  11. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express17(24), 21433–21441 (2009). [CrossRef] [PubMed]
  12. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.436(7-8), 333–346 (1947). [CrossRef]
  13. K. Artmann, “Berechnung der Seitenversetzung des totalreflextierten Strahles,” Ann. Phys.437(1-2), 87–102 (1948). [CrossRef]
  14. J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett.50(21), 1664–1667 (1983). [CrossRef]
  15. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett.32(11), 1432–1434 (2007). [CrossRef] [PubMed]
  16. H. Zhou, X. Chen, P. Hou, and C. F. Li, “Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Opt. Lett.33(11), 1249–1251 (2008). [CrossRef] [PubMed]
  17. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett.92(6), 061117 (2008). [CrossRef]
  18. X. Wang, C. Yin, J. Sun, J. Gao, M. Huang, and Z. Cao, “Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect,” J. Opt.15(1), 014007 (2013). [CrossRef]
  19. H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004). [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  21. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt.36(7), 1540–1546 (1997). [CrossRef] [PubMed]
  22. G. W. McLellan and E. B. Shand, Glass Engineering Handbook, 3rd ed. (McGraw-Hill, New York, 1984), Chpe. 2.
  23. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hanchen effect,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7330–7339 (2000). [CrossRef] [PubMed]
  24. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(5), 055601 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited