OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13394–13401

Linear dispersive pre-defined peak amplitude modulation of spectrally modulated Airy-based pulses

Miguel A. Preciado  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13394-13401 (2013)
http://dx.doi.org/10.1364/OE.21.013394


View Full Text Article

Enhanced HTML    Acrobat PDF (1588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectrally modulated Airy-based pulses peak amplitude modulation (PAM) in linear dispersive media is investigated, designed, and numerically simulated. As it is shown here, it is possible to design the spectral modulation of the initial Airy-based pulses to obtain a pre-defined PAM profile as the pulse propagates. Although optical pulses self-amplitude modulation is a well-known effect under non-linear propagation, the designed Airy-based pulses exhibit PAM under linear dispersive propagation. This extraordinary linear propagation property can be applied in many kinds of dispersive media, enabling its use in a broad range of experiments and applications.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(260.2030) Physical optics : Dispersion
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 9, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 15, 2013
Published: May 28, 2013

Citation
Miguel A. Preciado, "Linear dispersive pre-defined peak amplitude modulation of spectrally modulated Airy-based pulses," Opt. Express 21, 13394-13401 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Berry and N. Balazs, “Nonspreading wave packets,” Am. J. Phys47, 264–267 (1979). [CrossRef]
  2. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy airy beams,” Opt. Lett.32, 979–981 (2007). [CrossRef] [PubMed]
  3. G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett.99, 213901 (2007). [CrossRef]
  4. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-accelerating self-trapped optical beams,” Phys. Rev. Lett.106, 213903 (2011). [CrossRef] [PubMed]
  5. A. Lotti, D. Faccio, A. Couairon, D. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear airy beams,” Physical Review A84, 021807 (2011). [CrossRef]
  6. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics4, 103–106 (2010). [CrossRef]
  7. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105, 253901 (2010). [CrossRef]
  8. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from airy pulses in kerr media,” Opt. Express19, 17298–17307 (2011). [CrossRef] [PubMed]
  9. A. Rudnick and D. M. Marom, “Airy-soliton interactions in kerr media,” Opt. Express19, 25570–25582 (2011). [CrossRef]
  10. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett.107, 243901 (2011). [CrossRef]
  11. Y. Hu, M. Li, D. Bongiovanni, M. Clerici, J. Yao, Z. Chen, J. Azaña, and R. Morandotti, “Spectrum to distance mapping via nonlinear airy pulses,” Opt. Lett.38, 380–382 (2013). [CrossRef] [PubMed]
  12. M. A. Preciado and M. A. Muriel, “Metodo y sistema para la transmision de pulsos opticos a traves de medios dispersivos,” Spain patentEs2364935(2010).
  13. M. A. Preciado and M. A. Muriel, “Band-limited airy pulses for invariant propagation in single mode fibers,” J. Lightwave Technol.30, 3660–3666 (2012). [CrossRef]
  14. M. A. Preciado and K. Sugden, “Proposal and design of airy-based rocket pulses for invariant propagation in lossy dispersive media,” Opt. Lett.37, 4970–4972 (2012). [CrossRef] [PubMed]
  15. Y. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals(Academic press, 2003).
  16. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express19, 23132–23139 (2011). [CrossRef] [PubMed]
  17. M. Potasek and G. Agrawal, “Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers,” Phys. Rev. A.36, 3862 (1987). [CrossRef] [PubMed]
  18. O. Vallee and M. Soares, Airy Functions and Applications to Physics(Imperial College, 2004).
  19. J. Azaña, “Time-frequency (wigner) analysis of linear and nonlinear pulse propagation in optical fibers,” EURASIP J. Appl. Sig. Processing2005, 1554–1565 (2005). [CrossRef]
  20. J. Azaña and M. A. Muriel, “Study of optical pulses-fiber gratings interaction by means of joint time-frequency signal representations,” J. Lightwave Technol.21, 2931 (2003). [CrossRef]
  21. ITU-T, Optical Fibres, Cables and Systems(ITU, 2009).
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)(Oxford University Press, Inc., 2006).
  23. M. Ibsen and R. Feced, “Fiber bragg gratings for pure dispersion-slope compensation,” Opt. Lett.28, 980–982 (2003). [CrossRef] [PubMed]
  24. M. A. Preciado, V. Garcia-Munoz, and M. A. Muriel, “Grating design of oppositely chirped fbgs for pulse shaping,” IEEE Photon. Technol. Lett.19, 435–437 (2007). [CrossRef]
  25. M. A. Preciado, X. Shu, and K. Sugden, “Proposal and design of phase-modulated fiber gratings in transmission for pulse shaping,” Opt. Lett.38, 70–72 (2013). [CrossRef] [PubMed]
  26. A. M. Weiner, S. Enguehard, and B. Hatfield, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19, 161–238 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited