OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13502–13514

Randomization of gold nano-brick arrays: a tool for SERS enhancement

Yoshiaki Nishijima, Jacob B. Khurgin, Lorenzo Rosa, Hideki Fujiwara, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13502-13514 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6753 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface enhanced Raman scattering (SERS) was measured on periodic and randomly arranged patterns of Au nano-bricks (rectangular parallelepipeds). Resonant SERS conditions were investigated of a near-IR dye deposited on nanoparticles. Random mixtures of Au nano-bricks with different aspect ratio R showed stronger SERS enhancement as compared to periodic patterns with constant aspect ratio (R varies from 1 to 4). SERS mapping revealed up to ∼ 4 times signal increase at the hot-spots. Experimental observation is verified by numerical modeling and is qualitatively consistent with generic scaling arguments of interaction between plasmonic nanoparticles. The effect of randomization on the polarization selectivity for the transverse and longitudinal modes of nano-bricks is shown.

© 2013 osa

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4210) Scattering : Multiple scattering
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: March 26, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 19, 2013
Published: May 29, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Yoshiaki Nishijima, Jacob B. Khurgin, Lorenzo Rosa, Hideki Fujiwara, and Saulius Juodkazis, "Randomization of gold nano-brick arrays: a tool for SERS enhancement," Opt. Express 21, 13502-13514 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012). [CrossRef] [PubMed]
  2. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011). [CrossRef] [PubMed]
  3. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010). [CrossRef]
  4. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009). [CrossRef] [PubMed]
  5. T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013). [CrossRef]
  6. H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013). [CrossRef] [PubMed]
  7. S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012). [CrossRef]
  8. F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011). [CrossRef]
  9. K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007). [CrossRef]
  10. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999). [CrossRef]
  11. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012). [CrossRef]
  12. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008). [CrossRef]
  13. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011). [CrossRef]
  14. W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011). [CrossRef] [PubMed]
  15. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000). [CrossRef] [PubMed]
  16. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012). [CrossRef] [PubMed]
  17. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011). [CrossRef]
  18. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012). [CrossRef] [PubMed]
  19. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999). [CrossRef]
  20. M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001). [CrossRef] [PubMed]
  21. J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett.94, 22111 (2009). [CrossRef]
  22. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003). [CrossRef] [PubMed]
  23. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009). [CrossRef] [PubMed]
  24. M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012). [CrossRef]
  25. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012). [CrossRef]
  26. Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012). [CrossRef]
  27. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27, 241–250 (1998). [CrossRef]
  28. J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C112, 5605–5617 (2008). [CrossRef]
  29. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  30. S. Juodkazis, L. Rosa, and Y. Nishijima, “Plasmonic solutions for light harvesting in solar and sensing applications,” in Nanoplasmonics: Advanced Device ApplicationsJ. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.
  31. C. F. Bohren, Absorption and Scattering of Light by Small Particles(Wiley Interscience Publication, 1983).
  32. J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, IIIrd ed., 1998).
  33. For example, consider a one-dimensional intensity distribution I1(x), having constant value 1 for 0 < x< 10, and a second distribution I2(x) having value 0.8 for 0 < x< 8 and 1.8 for 8 < x< 10. While the two distributions have the same average 〈I1〉 = 〈I2〉 = 1, I2(x) is clearly less uniform than I1(x). This is reflected in the greater value of the variance estimator 〈I22〉/〈I2〉2=1.16with respect to 〈I12〉/〈I1〉2=1. In order to maximize its value the distribution should have a high degree of non-uniformity, which can be slightly increased by mixing nano-bricks with high aspect ratio, while it is the greatest (thus high enhancement) for a random distribution. When Ris increased, for the T-mode the non-uniformity is increased and the wavelength decreased, both of which favor an increase in Raman scattering relative to extinction (as the Raman scattering cross-section is proportional to 1/λ4). For the L-mode, both non-uniformity and wavelength increase, thus the two factors compensate each other, reducing the growth of Raman intensity with R.
  34. G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011). [CrossRef]
  35. A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, and S. Juodkazis, “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21, 6901–6909 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited