OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13533–13546

Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media

O.V. Kotov, M.A. Kol'chenko, and Yu. E. Lozovik  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13533-13546 (2013)
http://dx.doi.org/10.1364/OE.21.013533


View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The behavior of the TE and TM electromagnetic waves in graphene at the interface between two semi-infinite dielectric media is studied. The dramatic influence on the TE waves propagation even at very small changes in the optical contrast between the two dielectric media is predicted. Frequencies of the TE waves are found to lie only in the window determined by the contrast. We consider this effect in connection with the design of graphene-based optical gas sensor. Near the frequency, where the imaginary part of the conductivity of graphene becomes zero, ultrahigh refractive index sensitivity and very low detection limit are revealed. The considered graphene-based optical gas sensor outperforms characteristics of modern volume refractive index sensors by several orders of magnitude.

© 2013 OSA

OCIS Codes
(310.0310) Thin films : Thin films
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Sensors

History
Original Manuscript: March 21, 2013
Revised Manuscript: May 5, 2013
Manuscript Accepted: May 6, 2013
Published: May 29, 2013

Citation
O.V. Kotov, M.A. Kol'chenko, and Yu. E. Lozovik, "Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media," Opt. Express 21, 13533-13546 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W.  Ebbesen, H. J.  Lezec, H. F.  Ghaemi, T.  Thio, P. A.  Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons (Academic Press, 2009).
  5. V. V. Klimov, Nanoplasmonics: Fundamentals and Applications (Pan Stanford, 2012).
  6. F. J.  Garcia-Vidal, L.  Martin-Moreno, T. W.  Ebbesen, L.  Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  7. M. I.  Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  8. V. G.  Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  9. J. B.  Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  10. V. M.  Shalaev, W.  Cai, U. K.  Chettiar, H.-K.  Yuan, A. K.  Sarychev, V. P.  Drachev, A. V.  Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  11. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Exploration (Wiley-IEEE, 2006).
  12. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  13. B.  Luk’yanchuk, N. I.  Zheludev, S. A.  Maier, N. J.  Halas, P.  Nordlander, H.  Giessen, C. T.  Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  14. N. I.  Zheludev Y. S.  Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012). [CrossRef] [PubMed]
  15. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  16. A. H.  Castro Neto, F.  Guinea, N. M. R.  Peres, K. S.  Novoselov, A. K.  Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  17. K. I.  Bolotin, K. J.  Sikes, Z.  Jiang, M.  Klima, G.  Fudenberg, J.  Hone, P.  Kim, H. L.  Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008). [CrossRef]
  18. A.  Grigorenko, M.  Polini, K.  Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]
  19. Q.  Bao K. P.  Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012). [CrossRef] [PubMed]
  20. O.  Vafek, “Thermoplasma polariton within scaling theory of single-layer graphene,” Phys. Rev. Lett. 97(26), 266406 (2006). [CrossRef] [PubMed]
  21. B.  Wunsch, T.  Sauber, F.  Sols, F.  Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006). [CrossRef]
  22. E. H.  Hwang S.  Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007). [CrossRef]
  23. V.  Ryzhii, A.  Satou, T.  Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007). [CrossRef]
  24. X. F.  Wang T.  Chakraborty, “Coulomb screening and collective excitations in a graphene bilayer,” Phys. Rev. B 75(4), 041404(R) (2007). [CrossRef]
  25. F.  Rana, “Graphene terahertz plasmon oscillators,” IEEE T. Nanotechnol. 7(1), 91–99 (2008). [CrossRef]
  26. M.  Polini, R.  Asgari, G.  Borghi, Y.  Barlas, T.  Pereg-Barnea, A. H.  MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B 77, 081411(R) (2008).
  27. G. W.  Hanson, “Dyadic Greens functions and guided surface waves on graphene,” J. Appl. Phys. 103, 064302 (2008). [CrossRef]
  28. M.  Jablan, H.  Buljan, M.  Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009). [CrossRef]
  29. O. V.  Gamayun, “Dynamical screening in bilayer graphene,” Phys. Rev. B 84(8), 085112 (2011). [CrossRef]
  30. F. H. L.  Koppens, D. E.  Chang, F. J.  García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  31. T.  Stauber G.  Gomez-Santos, “Plasmons and near-field amplification in double-layer graphene,” Phys. Rev. B 85(7), 075410 (2012). [CrossRef]
  32. T.  Stauber G.  Gomez-Santos, “Graphene plasmons and retardation: Strong light-matter coupling,” Europhys. Lett. 99(2), 27006 (2012). [CrossRef]
  33. T.  Stauber G.  Gomez-Santos, “Plasmons in layered structures including graphene,” New J. Phys. 14(10), 105018 (2012). [CrossRef]
  34. Yu. V.  Bludov, M. I.  Vasilevskiy, N. M. R.  Peres, “Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene,” Europhys. Lett. 92(6), 68001 (2010). [CrossRef]
  35. Yu. V.  Bludov, M. I.  Vasilevskiy, N. M. R.  Peres, “Graphene-based polaritonic crystal,” Phys. Rev. B 85(24), 245409 (2012). [CrossRef]
  36. Yu. V.  Bludov, M. I.  Vasilevskiy, N. M. R.  Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012). [CrossRef]
  37. W.  Gao, J.  Shu, C.  Qiu, Q.  Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012). [CrossRef] [PubMed]
  38. N.  Papasimakis, Z.  Luo, Z. X.  Shen, F.  De Angelis, E.  Di Fabrizio, A. E.  Nikolaenko, N. I.  Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010). [CrossRef] [PubMed]
  39. L.  Wu, H. S.  Chu, W. S.  Koh, E. P.  Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010). [CrossRef] [PubMed]
  40. A.  Vakil N.  Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  41. Q.  Bao, H.  Zhang, B.  Wang, Z.  Ni, C. H. Y. X.  Lim, Y.  Wang, D. Y.  Tang, K. P.  Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]
  42. L.  Ju, B.  Geng, J.  Horng, C.  Girit, M.  Martin, Z.  Hao, H. A.  Bechtel, X.  Liang, A.  Zettl, Y. R.  Shen, F.  Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef] [PubMed]
  43. M.  Liu, X.  Yin, E.  Ulin-Avila, B.  Geng, T.  Zentgraf, L.  Ju, F.  Wang, X.  Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  44. T. J.  Echtermeyer, L.  Britnell, P. K.  Jasnos, A.  Lombardo, R. V.  Gorbachev, A. N.  Grigorenko, A. K.  Geim, A. C.  Ferrari, K. S.  Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat Commun 2, 458 (2011). [CrossRef] [PubMed]
  45. A.  Ferreira N. M. R.  Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012). [CrossRef]
  46. A. Yu.  Nikitin, F.  Guinea, F. J.  García-Vidal, L.  Martín-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405(R) (2012).
  47. A. Yu.  Nikitin, F.  Guinea, L.  Martín-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012). [CrossRef]
  48. Z.  Fang, Y.  Wang, Z.  Liu, A.  Schlather, P. M.  Ajayan, F. H. L.  Koppens, P.  Nordlander, N. J.  Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012). [CrossRef] [PubMed]
  49. S.  Thongrattanasiri, F. H. L.  Koppens, F. J.  García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef] [PubMed]
  50. J.  Christensen, A.  Manjavacas, S.  Thongrattanasiri, F. H. L.  Koppens, F. J.  de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012). [CrossRef] [PubMed]
  51. H.  Yan, X.  Li, B.  Chandra, G.  Tulevski, Y.  Wu, M.  Freitag, W.  Zhu, P.  Avouris, F.  Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012). [CrossRef] [PubMed]
  52. S. H.  Lee, M.  Choi, T.-T.  Kim, S.  Lee, M.  Liu, X.  Yin, H. K.  Choi, S. S.  Lee, C. G.  Choi, S. Y.  Choi, X.  Zhang, B.  Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012). [CrossRef] [PubMed]
  53. R.  Alaee, M.  Farhat, C.  Rockstuhl, F.  Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012). [CrossRef] [PubMed]
  54. R.  Yan, B.  Sensale-Rodriguez, L.  Liu, D.  Jena, H. G.  Xing, “A new class of electrically tunable metamaterial terahertz modulators,” Opt. Express 20(27), 28664–28671 (2012). [CrossRef] [PubMed]
  55. Y.  Zou, P.  Tassin, T.  Koschny, C. M.  Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012). [CrossRef] [PubMed]
  56. V. G.  Kravets, F.  Schedin, R.  Jalil, L.  Britnell, R. V.  Gorbachev, D.  Ansell, B.  Thackray, K. S.  Novoselov, A. K.  Geim, A. V.  Kabashin, A. N.  Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013). [CrossRef] [PubMed]
  57. Z.  Fei, A. S.  Rodin, G. O.  Andreev, W.  Bao, A. S.  McLeod, M.  Wagner, L. M.  Zhang, Z.  Zhao, M.  Thiemens, G.  Dominguez, M. M.  Fogler, A. H.  Castro Neto, C. N.  Lau, F.  Keilmann, D. N.  Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012). [PubMed]
  58. J.  Chen, M.  Badioli, P.  Alonso-González, S.  Thongrattanasiri, F.  Huth, J.  Osmond, M.  Spasenović, A.  Centeno, A.  Pesquera, P.  Godignon, A. Z.  Elorza, N.  Camara, F. J.  García de Abajo, R.  Hillenbrand, F. H. L.  Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012). [PubMed]
  59. S. A.  Mikhailov K.  Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007). [CrossRef] [PubMed]
  60. M.  Jablan, H.  Buljan, M.  Soljačić, “Transverse electric plasmons in bilayer graphene,” Opt. Express 19(12), 11236–11241 (2011). [CrossRef] [PubMed]
  61. F.  Stern, “Polarizability of a two-dimensional electron gas,” Phys. Rev. Lett. 18(14), 546–548 (1967). [CrossRef]
  62. M.  Nakayama, “Theory of surface waves coupled to surface carriers,” J. Phys. Soc. Jpn. 36(2), 393–398 (1974). [CrossRef]
  63. G. W.  Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008). [CrossRef]
  64. F. M. D.  Pellegrino, G. G. N.  Angilella, R.  Pucci, “Linear response correlation functions in strained graphene,” Phys. Rev. B 84(19), 195407 (2011). [CrossRef]
  65. G.  Gómez-Santos T.  Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011). [CrossRef]
  66. A.  Ferreira, N. M. R.  Peres, A. H.  Castro Neto, “Confined magneto-optical waves in graphene,” Phys. Rev. B 85(20), 205426 (2012). [CrossRef]
  67. I.  Iorsh, I.  Shadrivov, P.  Belov, Y.  Kivshar, “Tunable hybrid surface waves supported by a graphene layer,” JETP Lett. 97, 287–290 (2013).
  68. J. S.  Gómez-Díaz J.  Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically biased graphene sheets,” J. Appl. Phys. 112(12), 124906 (2012). [CrossRef]
  69. J. S.  Gómez-Díaz, J. R.  Mosig, J.  Perruisseau-Carrier, “Effect of spatial dispersion on surface waves propagating along graphene sheets,” (2013), http://arxiv.org/abs/1301.1337 . [CrossRef]
  70. A. V.  Gorbach, “Nonlinear graphene plasmonics: amplitude equation for surface plasmons,” Phys. Rev. A 87(1), 013830 (2013). [CrossRef]
  71. J.  Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  72. J.  Hodgkinson R. P.  Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013). [CrossRef]
  73. R.  St-Gelais, J.  Masson, Y.-A.  Peter, “All-silicon integrated Fabry–Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009). [CrossRef]
  74. V. P.  Gusynin, S. G.  Sharapov, J. P.  Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006). [CrossRef] [PubMed]
  75. L. A.  Falkovsky A. A.  Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007). [CrossRef]
  76. Y.  Zhang, V. W.  Brar, C.  Girit, A.  Zettl, M. F.  Crommie, “Origin of spatial charge inhomogeneity in graphene,” Nat. Phys. 5(10), 722–726 (2009). [CrossRef]
  77. D. C.  Elias, R. V.  Gorbachev, A. S.  Mayorov, S. V.  Morozov, A. A.  Zhukov, P.  Blake, L. A.  Ponomarenko, I. V.  Grigorieva, K. S.  Novoselov, F.  Guinea, A. K.  Geim, “Dirac cones reshaped by interaction effects in suspended graphene,” Nat. Phys. 7(9), 701–704 (2011). [CrossRef]
  78. J. T.  Kim S.-Y.  Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011). [CrossRef] [PubMed]
  79. B.  Wang, X.  Zhang, F. J.  García-Vidal, X.  Yuan, J.  Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited