OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13580–13591

Vertically stacked microring waveguides for coupling between multiple photonic planes

Jonathan T. Bessette and Donghwan Ahn  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13580-13591 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a design for a low-footprint optical interconnect that efficiently couples between two photonic planes with significant vertical separation up to 10 μm and a footprint less than 10 μm × 10 μm. The device may be used to connect between deposited passive waveguide devices in the upper plane and active devices on a substrate. The design is based on a vertical stack of coupled ring resonators. We demonstrate basic feasibility of the design and estimates of device performance based on numerical simulation. A matrix model is presented to estimate spectral performance as a function of several design parameters.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits
(230.4555) Optical devices : Coupled resonators
(130.6622) Integrated optics : Subsystem integration and techniques

ToC Category:
Integrated Optics

Original Manuscript: March 4, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 18, 2013
Published: May 30, 2013

Jonathan T. Bessette and Donghwan Ahn, "Vertically stacked microring waveguides for coupling between multiple photonic planes," Opt. Express 21, 13580-13591 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Michel, J. Liu, and L. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  2. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express20(28), 29223–29236 (2012). [CrossRef] [PubMed]
  3. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  4. M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. S. Rasras, D. M. Gill, S. S. Patel, K. Y. Tu, Y. K. Chen, and A. E. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008). [CrossRef]
  5. S. Sahni, A. Narasimha, A. Mekis, B. Welch, C. Bradbury, C. Sohn, D. Song, D. Martinez, D. Foltz, D. Guckenberger, G. Masini, J. Eicher, J. Dong, J. Schramm, J. White, J. Redman, K. Yokoyama, M. Tlalka, M. Harrison, M. Peterson, M. Saberi, M. Mack, M. Sharp, P. De Dobbelaere, R. LeBlanc, S. Leap, S. Abdalla, S. Gloeckner, S. Hovey, S. Jackson, S. Yu, T. Pinguet, W. Xu, and Y. Liang, “Silicon photonic integrated circuits,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3A.3.
  6. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20(11), 12222–12232 (2012). [CrossRef] [PubMed]
  7. H.-C. Ji, K. H. Ha, K. W. Na, S. G. Kim, I. S. Joe, D. J. Shin, K. H. Lee, S. D. Suh, J. K. Bok, Y. S. You, Y. W. Hyung, S. S. Kim, Y. D. Park, and C. H. Chung, “Bulk silicon photonic wire for one-chip integrated optical interconnection,” in Proceedings of 2010 7th IEEE International Conference on the Group IV Photonics (GFP) (2010), pp. 96–98. [CrossRef]
  8. K.-H. Lee, D. J. Shin, H.-C. Ji, K. Na, S. G. Kim, J. Bok, Y. You, S. Kim, I. Joe, S. D. Suh, J. Pyo, Y.-H. Shin, K. Ha, Y. D. Park, and C. H. Chung, “10Gb/s silicon modulator based on bulk-silicon platform for DRAM optical interface,” in the National Fiber Optic Engineers Conference (2011), paper JThA033. C. [CrossRef]
  9. A. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29(4), 8–21 (2009). [CrossRef]
  10. S. Jatar, Y. Malinge, Z. Zhou, H. Liang, S. Liao, Z. Li, C. Bushyakanist, D. C. Lee, R. Shafiiha, J. Luff, D. Feng, and M. Asghari, “Performance of parallel 4×25 Gbs transmitter and receiver fabricated on SOI platform,” presented at the Group IV Photonics (GFP), 2011 8th IEEE International Conference on, 2012, pp. 159–161.
  11. SOITEC, “Questions and answers on fully depleted SOI technology,” pp. 1–17 (2010). Available online: http://www.soitec.com/pdf/SOIconsortium_FDSOI_QA.pdf
  12. C. Holzwarth, J. Orcutt, H. Li, M. Popovic, V. Stojanovic, J. Hoyt, R. Ram, and H. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5. [CrossRef]
  13. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  14. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levi, M. Lipson, and K. Bergman, “Photonic network-on-chip architecture using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emer. Tech in Comp. Syst. 7 (2011).
  15. K. A. McComber, X. Duan, J. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1049–1057 (2012). [CrossRef]
  16. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express16(16), 11682–11690 (2008). [CrossRef] [PubMed]
  17. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6(1), 47–73 (2012). [CrossRef]
  18. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  19. M. Sumetsky, “Vertically-stacked multi-ring resonator,” Opt. Express13(17), 6354–6375 (2005). [CrossRef] [PubMed]
  20. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011). [CrossRef] [PubMed]
  21. C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express18(3), 2973–2986 (2010). [CrossRef] [PubMed]
  22. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999). [CrossRef] [PubMed]
  23. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009). [CrossRef]
  24. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009). [CrossRef]
  25. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010). [CrossRef] [PubMed]
  26. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express12(1), 90–103 (2004). [CrossRef] [PubMed]
  27. H.-C. Liu and A. Yariv, “Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs),” Opt. Express19(18), 17653–17668 (2011). [CrossRef] [PubMed]
  28. M. Shafiei, M. Khanzadeh, M. Agha-Bolorizadeh, and R. F. Moghaddam, “Linear transmission properties of a vertically stacked multiring resonator with a defect,” Appl. Opt.48(31), G148–G155 (2009). [CrossRef] [PubMed]
  29. M. Shafiei and M. Khanzadeh, “Low-threshold bistability in nonlinear microring tower resonator,” Opt. Express18(25), 25509–25518 (2010). [CrossRef] [PubMed]
  30. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9(9), 919–933 (1973). [CrossRef]
  31. H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987). [CrossRef]
  32. B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagnetics Res.10, 217–270 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited