OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13607–13616

Advanced perturbation technique for digital backward propagation in WDM systems

Lian Xiang, Paul Harper, and Xiaoping Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13607-13616 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved digital backward propagation (DBP) is proposed to compensate inter-nonlinear effects and dispersion jointly in WDM systems based on an advanced perturbation technique (APT). A non-iterative weighted concept is presented to replace the iterative in analytical recursion expression, which can dramatically simplify the complexity and improve accuracy compared to the traditional perturbation technique (TPT). Furthermore, an analytical recursion expression of the output after backward propagation is obtained initially. Numerical simulations are executed for various parameters of the transmission system. The results indicate that the advanced perturbation technique will relax the step size requirements and reduce the oversampling factor when launch power is higher than −2 dBm. We estimate this technique will reduce computational complexity by a factor of around seven with respect to the conventional DBP.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 28, 2013
Revised Manuscript: April 21, 2013
Manuscript Accepted: May 5, 2013
Published: May 30, 2013

Lian Xiang, Paul Harper, and Xiaoping Zhang, "Advanced perturbation technique for digital backward propagation in WDM systems," Opt. Express 21, 13607-13616 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ip and J. M. Kahn, “Nonlinear impairment compensation using backpropagation,” in Optical Fibre, New Developments (In-Tech, to be published).
  2. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001). [CrossRef] [PubMed]
  3. K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, “Information capacity of optical fiber channels with zero average dispersion,” Phys. Rev. Lett.91(20), 203901 (2003). [CrossRef] [PubMed]
  4. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008). [CrossRef] [PubMed]
  5. E. Ip, A. P. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent Detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008). [CrossRef] [PubMed]
  6. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express18(16), 17075–17088 (2010). [CrossRef] [PubMed]
  7. R. Waegemans, S. Herbst, L. Holbein, P. Watts, P. Bayvel, C. Fürst, and R. I. Killey, “10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation,” Opt. Express17(10), 8630–8640 (2009). [CrossRef] [PubMed]
  8. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008). [CrossRef] [PubMed]
  9. R. Asif, C. Y. Lin, and B. Schmauss, Digital Backward Propagation: A Technique to Compensate Fiber Dispersion and Nonlinear Impairments (InTech-Book Publisher 2011).
  10. E. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express16(20), 16124–16137 (2008). [CrossRef] [PubMed]
  11. E. F. Mateo and G. Li, “Compensation of interchannel nonlinearities using enhanced coupled equations for digital backward propagation,” Appl. Opt.48(25), F6–F10 (2009). [CrossRef] [PubMed]
  12. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008). [CrossRef] [PubMed]
  13. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed Transmission,” J. Lightwave Technol.28(6), 939–951 (2010). [CrossRef]
  14. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron.16(5), 1217–1226 (2010). [CrossRef]
  15. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express18(22), 22796–22807 (2010). [CrossRef] [PubMed]
  16. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express19(4), 3449–3454 (2011). [CrossRef] [PubMed]
  17. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express19(6), 5219–5224 (2011). [CrossRef] [PubMed]
  18. G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of Fiber Impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett.20(22), 1887–1889 (2008). [CrossRef]
  19. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010). [CrossRef]
  20. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2(5), 816–832 (2010). [CrossRef]
  21. B. Schmauss, R. Asif, and C.-Y. Lin, “Recent advances in digital backward propagation algorithm for coherent transmission systems with higher order modulation formats,” in Proc. SPIE (2012)
  22. L. Lin, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Proc. OFC (2011).
  23. J. Leibrich and W. Rosenkranz, “Efficient numerical simulation of multichannel WDM transmission systems limited by XPM,” IEEE Photon. Technol. Lett.15(3), 395–397 (2003). [CrossRef]
  24. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express18(14), 15144–15154 (2010). [CrossRef] [PubMed]
  25. E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Express19(2), 570–583 (2011). [CrossRef] [PubMed]
  26. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.1(2), 144–152 (2009). [CrossRef]
  27. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  28. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express19(10), 9453–9460 (2011). [CrossRef] [PubMed]
  29. T. Yoshida, T. Sugihara, H. Goto, T. Tokura, K. Ishida, and T. Mizuochi, “A study on statistical equalization of intra-channel fiber nonlinearity for digital coherent optical systems,” in Proc. ECOC’ 11, Tu.3.A. (2011)
  30. L. Zhu and G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Express20(13), 14362–14370 (2012). [CrossRef] [PubMed]
  31. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proc. ECOC (2011).
  32. T. Hoshida, L. Dou, T. Tanimura, W. Yan, S. Oda, L. Li, H. Nakashima, M. Yan, Z. Tao, and J. C. Rasmussen, “Digital nonlinear compensation techniques for high-speed DWDM transmission systems,” in Proc.ECOC (2012). [CrossRef]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  34. A. O. Korotkevich and P. M. Lushnikov, “Proof-of-concept implementation of the massively parallel algorithm for simulation of dispersion-managed WDM optical fiber systems,” Opt. Lett.36(10), 1851–1853 (2011). [CrossRef] [PubMed]
  35. L. Xiang and X. P. Zhang, “The study of information capacity in multispan nonlinear optical fiber communication systems using a developed perturbation technique,” J. Lightwave Technol.29(3), 260–264 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited