OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13691–13698

Hybrid phase-change plasmonic crystals for active tuning of lattice resonances

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk'yanchuk, S. A. Maier, and M. H. Hong  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13691-13698 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tunable lattice resonances are demonstrated in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm (1.89 µm to 2.27 µm) is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(350.2770) Other areas of optics : Gratings
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optics at Surfaces

Original Manuscript: April 25, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 25, 2013
Published: May 31, 2013

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk'yanchuk, S. A. Maier, and M. H. Hong, "Hybrid phase-change plasmonic crystals for active tuning of lattice resonances," Opt. Express 21, 13691-13698 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express19(15), 14653–14661 (2011). [CrossRef] [PubMed]
  2. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009). [CrossRef] [PubMed]
  3. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  4. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013). [CrossRef] [PubMed]
  5. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011). [CrossRef] [PubMed]
  6. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012). [CrossRef] [PubMed]
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009). [CrossRef] [PubMed]
  8. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  9. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012). [CrossRef] [PubMed]
  11. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008). [CrossRef]
  12. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012). [CrossRef] [PubMed]
  13. J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008). [CrossRef]
  14. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009). [CrossRef] [PubMed]
  15. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  16. K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012). [CrossRef] [PubMed]
  17. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010). [CrossRef] [PubMed]
  18. H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968). [CrossRef]
  19. N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998). [CrossRef]
  20. N. Yamada, “Development of materials for third generation optical storage media,” in Phase Change Materials: Science and Applications, S. Raoux and M. Wuttig, eds. (Springer, 2009).
  21. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010). [CrossRef] [PubMed]
  22. C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express19(10), 9492–9504 (2011). [CrossRef] [PubMed]
  23. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011). [CrossRef] [PubMed]
  24. P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88(7), 3926–3933 (2000). [CrossRef]
  25. L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).
  26. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  27. H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008). [CrossRef]
  28. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010). [CrossRef]
  29. U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007). [CrossRef]
  30. N. V. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt.46(19), 4065–4072 (2007). [CrossRef] [PubMed]
  31. D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982). [CrossRef]
  32. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999). [CrossRef]
  33. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007). [CrossRef] [PubMed]
  34. L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007). [CrossRef]
  35. P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009). [CrossRef]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited