OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13710–13725

A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures

Prateek Mehrotra, Chris A. Mack, and Richard J. Blaikie  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13710-13725 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1796 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Higher resolution demands for semiconductor lithography may be fulfilled by higher numerical aperture (NA) systems. However, NAs more than the photoresist refractive index (~1.7) cause surface confinement of the image. In this paper we describe how evanescent wave coupling to effective gain medium surface states beneath the imaging layer can counter this problem. We experimentally demonstrate this at λ = 405 nm using hafnium oxide on SiO2 to enhance the image depth of a 55-nm line and space pattern (numerical aperture of 1.824) from less than 40 nm to more than 90 nm. We provide a design example at λ = 193 nm, where a layer of sapphire on SiO2 counters image decay by an effective-gain-medium resonance phenomena allowing evanescent interferometric lithography to create high aspect ratio structures at NAs of 1.85 (26-nm resolution) and beyond.

© 2013 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.5220) Imaging systems : Photolithography
(240.6690) Optics at surfaces : Surface waves
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Imaging Systems

Original Manuscript: May 3, 2013
Revised Manuscript: May 20, 2013
Manuscript Accepted: May 23, 2013
Published: May 31, 2013

Prateek Mehrotra, Chris A. Mack, and Richard J. Blaikie, "A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures," Opt. Express 21, 13710-13725 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).
  2. E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).
  3. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication. (John Wiley & Sons, 2007).
  4. M. Born and E. Wolf, Principles of Optics. (Cambridge University, 1997).
  5. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006). [CrossRef]
  6. J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005). [CrossRef]
  7. B. W. Smith and J. Zhou, “Snell or Fresnel - The influence of material index on hyper NA lithography,” Proc. SPIE6520A, 6520 (2007). [CrossRef]
  8. B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresists,” Proc. SPIE4691, 11–24 (2002). [CrossRef]
  9. J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007). [CrossRef]
  10. P. Xie and B. W. Smith, “Projection lithography below lambda/7 through deep-ultraviolet evanescent optical imaging,” J. Vac. Sci. Technol. B28(6), C6Q12 (2010). [CrossRef]
  11. P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography,” J. Micro-Nanolithography MEMS and MOEMS10(3), 033012 (2011).
  12. B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005). [CrossRef]
  13. IBM, A Testbed for 193 nm Interferometric Immersion Lithography. [Online] Available: http://www.almaden.ibm.com/st/chemistry/lithography/immersion/NEMO/ [3 May 2012].
  14. C. H. Chang, The MIT Nanoruler: A Tool for Patterning Nano-Accurate Gratings. [Online] Available: http://nanoweb.mit.edu/Annual%20Reports%202005/sec.10.ms.pdf [3 May 2012].
  15. I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013). [CrossRef]
  16. C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011). [CrossRef] [PubMed]
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business, 2007).
  18. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  19. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express15(1), 183–197 (2007). [CrossRef] [PubMed]
  20. J. Lagois and B. Fischer, “Experimental Observation of Surface Exciton Polaritons,” Phys. Rev. Lett.36(12), 680–683 (1976). [CrossRef]
  21. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991). [CrossRef] [PubMed]
  22. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990). [CrossRef]
  23. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007). [CrossRef] [PubMed]
  24. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  25. R. J. Blaikie and D. O. S. Melville, “Imaging through planar silver lenses in the optical near field,” J. Opt. A7(2), S176–S183 (2005). [CrossRef]
  26. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  27. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B23(3), 461–467 (2006). [CrossRef]
  28. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003). [CrossRef]
  29. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  30. P. Mehrotra, “High Aspect Ratio Lithographic Imaging at Ultra-high Numerical Apertures: Evanescent Interferometric Lithography with Resonant Reflector Layers,” PhD thesis, (University of Canterbury, Christchurch, New Zealand, 2012).
  31. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited