OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13748–13757

Intrinsic stability of quantum cascade lasers against optical feedback

F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13748-13757 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the time dependence of the optical power emitted by terahertz and mid-IR quantum cascade lasers in presence of optical reinjection and demonstrate unprecedented continuous wave (CW) emission stability for strong feedback. We show that the absence of coherence collapse or other CW instabilities typical of diode lasers is inherently associated with the high value of the photon to carrier lifetime ratio and the negligible linewidth enhancement factor of quantum cascade lasers.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3430) Lasers and laser optics : Laser theory
(140.3425) Lasers and laser optics : Laser stabilization
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 8, 2013
Published: May 31, 2013

F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio, "Intrinsic stability of quantum cascade lasers against optical feedback," Opt. Express 21, 13748-13757 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007). [CrossRef]
  4. M. S. Vitiello and A. Tredicucci, “Tunable emission in a THz quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol.1(1), 76–84 (2011). [CrossRef]
  5. M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  6. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. Mc Manus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  7. Y. I. Khanin, in Principles of Laser Dynamics (Elsevier, 1995).
  8. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett.79(16), 2526–2528 (2001). [CrossRef]
  9. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics5(5), 306–313 (2011). [CrossRef]
  10. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express17(15), 12929–12943 (2009). [CrossRef] [PubMed]
  11. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent Coupling of Multiple Transverse Modes in Quantum Cascade Lasers,” Phys. Rev. Lett.102(1), 013901 (2009). [CrossRef] [PubMed]
  12. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A77(5), 053804 (2008). [CrossRef]
  13. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Self-Mode-Locking of Quantum Cascade Lasers with Giant Ultrafast Optical Nonlinearities,” Science290(5497), 1739–1742 (2000). [CrossRef] [PubMed]
  14. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat Commun3, 1040 (2012). [CrossRef] [PubMed]
  15. J. Kroll, J. Darmo, K. Unterrainer, S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007). [CrossRef]
  16. D. M. Kane and K. A. Shore, in Unlocking Dynamical Diversity – Optical Feedback Effects on Semiconductor Diode Lasers (J. Wiley and Sons, 2005).
  17. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett.36(13), 2587–2589 (2011). [CrossRef] [PubMed]
  18. Y. L. Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett.99(8), 081108 (2011). [CrossRef]
  19. M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012). [CrossRef] [PubMed]
  20. F. P. Mezzapesa, V. Spagnolo, A. Antonio, and G. Scamarcio, “Detection of ultrafast laser ablation using quantum cascade laser-based sensing,” Appl. Phys. Lett.101(17), 171107 (2012). [CrossRef]
  21. J. Helms and K. Petermann, “A simple analytic expression for the stable operation range of laser diodes with optical feedback,” IEEE J. Quantum Electron.26(5), 833–836 (1990). [CrossRef]
  22. R. P. Green, J. H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, “Linewidth enhancement factor of terahertz quantum cascade lasers,” Appl. Phys. Lett.92(7), 071106 (2008). [CrossRef]
  23. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron.16(3), 347–355 (1980). [CrossRef]
  24. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986). [CrossRef]
  25. B. Tromborg, J. H. Osmundsen, and H. Olesen, “Stability Analysis for a Semiconductor Laser in an External Cavity,” IEEE J. Quantum Electron.20(9), 1023–1032 (1984). [CrossRef]
  26. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum cascade lasers: hidden reason for the narrow linewidth and line broadening by therma photons,” IEEE J. Quantum Electron.44(1), 12–29 (2008). [CrossRef]
  27. M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum limited frequency fluctuations in a terahertz laser,” Nat. Photonics6(8), 525–528 (2012). [CrossRef]
  28. D. Weidmann, K. Smith, and B. Ellison, “Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 microm continuous-wave distributed-feedback quantum-cascade laser,” Appl. Opt.46(6), 947–953 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited