OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13779–13784

Experimental wavelet based denoising for indoor infrared wireless communications

Sujan Rajbhandari, Zabih Ghassemlooy, and Maia Angelova  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13779-13784 (2013)
http://dx.doi.org/10.1364/OE.21.013779


View Full Text Article

Enhanced HTML    Acrobat PDF (1011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the experimental wavelet denoising techniques carried out for the first time for a number of modulation schemes for indoor optical wireless communications in the presence of fluorescent light interference. The experimental results are verified using computer simulations, clearly illustrating the advantage of the wavelet denoising technique in comparison to the high pass filtering for all baseband modulation schemes.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 3, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 15, 2013
Published: May 31, 2013

Citation
Sujan Rajbhandari, Zabih Ghassemlooy, and Maia Angelova, "Experimental wavelet based denoising for indoor infrared wireless communications," Opt. Express 21, 13779-13784 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-11-13779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett.48(4), 228–230 (2012). [CrossRef]
  2. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network,” J. Lightwave Technol.27(20), 4493–4500 (2009). [CrossRef]
  3. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed indoor optical wireless communication system with single channel imaging receiver,” Opt. Express20(8), 8442–8456 (2012). [CrossRef] [PubMed]
  4. S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012). [CrossRef]
  5. D. C. O'Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC 2008, 1–5. [CrossRef]
  6. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet-artificial neural network receiver for indoor optical wireless communications,” J. Lightwave Technol.29(17), 2651–2659 (2011). [CrossRef]
  7. G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon. Technol. Lett.6(10), 1268–1270 (1994). [CrossRef]
  8. S. Lee, “Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers,” Microw. Opt. Technol. Lett.40(3), 228–231 (2004). [CrossRef]
  9. R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997). [CrossRef]
  10. A. C. Boucouvalas, “Indoor ambient light noise and its effect on wireless optical links,” IEEE P-Optoelectron143(6), 334–338 (1996). [CrossRef]
  11. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Experimental investigation of wavelet-based denoising receiver for los indoor optical wireless communications links,” IEEE Photon. Technol. Lett.23(20), 1502–1504 (2011). [CrossRef]
  12. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice Hall, 1998.)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited