OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 11 — Jun. 3, 2013
  • pp: 13810–13817

Tailored bandgaps: iterative algorithms of diffractive optics

Tuomas Vallius  »View Author Affiliations

Optics Express, Vol. 21, Issue 11, pp. 13810-13817 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diffractive optics design method based on a phase retrieval algorithm and carrier grating coding is modified to enable designing of photonic bandgap reflectances. Discrete and continuous signals are designed for a fiber grating to demonstrate the capability of the approach. The method is proved a versatile tool for synthesizing reflectance spectra of periodic structures.

© 2013 OSA

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.1960) Diffraction and gratings : Diffraction theory
(060.2310) Fiber optics and optical communications : Fiber optics
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 12, 2013
Revised Manuscript: May 4, 2013
Manuscript Accepted: May 9, 2013
Published: May 31, 2013

Tuomas Vallius, "Tailored bandgaps: iterative algorithms of diffractive optics," Opt. Express 21, 13810-13817 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguide: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978). [CrossRef]
  2. G. Meltz, W. W. Morey, and W. H. Glen, “Formation of Bragg grating in optical fibers by transverse holographic method,” Opt. Lett.14, 823–825 (1989). [CrossRef] [PubMed]
  3. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fibre by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993). [CrossRef]
  4. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 2010).
  5. H. Nishihara, M. Haruna, and T. Suhara, Integrated Optical Circuits (McGraw-Hill, New York, 1989).
  6. T. Aalto, S. Yliniemi, P. Heimala, P. Pekko, J. Simonen, and M. Kuittinen, “Integrated Bragg gratings in silicon-on-insulator waveguides,” in Integrated Optics: Devices, Materials, and Technologies VI, Y. S. Sidorin and A. Tervonen, eds., Proc SPIE4640, 117–124 (2002). [CrossRef]
  7. R. Kashyap, “Design of step-chirped fibre Bragg gratings,” Opt. Commun.136, 461–469 (1997). [CrossRef]
  8. D. Wiesmann, R. Germann, G.-L. Bona, C. David, D. Erni, and H. Jäckel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B20, 417–423 (2003). [CrossRef]
  9. K. A. Winick, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26, 1918–1929 (1990). [CrossRef]
  10. M. Verbist, D. Van Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filtering based on volume holography,” Opt. Lett.38, 386–388 (2013). [CrossRef] [PubMed]
  11. T. Vallius, J. Konttinen, and P. Tuomisto, “An optical broadband filter and a device comprising the same,” EpiCrystals Inc., US Patent Application US61/491,007, (2011).
  12. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973). [CrossRef]
  13. H. Kogelnik and C. V. Shank, “Coupled-mode theory of distributed feedback lasers,” Appl. Phys.43, 2327–2335 (1972). [CrossRef]
  14. J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, “Interactions between light waves in a nonlinear medium,” Phys. Rev.127, 1918–1939 (1962). [CrossRef]
  15. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  16. F. Wyrowski, “Diffractive optical elements: Iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A7, 961–969 (1990). [CrossRef]
  17. J. R. Fienup, “Phase retrieval algorithms: a personal tour,” Appl. Opt.52, 45–56 (2013). [CrossRef] [PubMed]
  18. F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys.54, 1481–1571 (1991). [CrossRef]
  19. D. Prongu, H. P. Herzig, R. Dänliker, and M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt.31, 5706–5711 (1992). [CrossRef]
  20. J. Turunen, P. Vahimaa, M. Honkanen, O. Salminen, and E. Noponen, “Zeroth-order complex-amplitude modulation with dielectric Fourier-type diffractive elements,” J. Mod. Opt.43, 1389–1398 (1996).
  21. V. Kettunen, P. Vahimaa, J. Turunen, and E. Noponen, “Zeroth-order coding of complex amplitude in two dimensions,” J. Opt. Soc. Am. A14, 808–815 (1997). [CrossRef]
  22. A. W. Lohmann and D. P. Paris, “Binary Franhofer holograms, generated by computer,” Appl. Opt.6, 1739–1748 (1967). [CrossRef] [PubMed]
  23. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt.5, 967–969 (1966). [CrossRef] [PubMed]
  24. H. Aagedal, M. Schmid, S. Egner, J. Müller-Quade, T. Beth, and F. Wyrowski, “Analytical beam shaping with application to laser diode arrays,” J. Opt. Soc. Am. A14, 1549–1553 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited