OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13896–13905

Giant optical nonlinearity of a single plasmonic nanostructure

Pavel N. Melentiev, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, and Victor I. Balykin  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 13896-13905 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We realize giant optical nonlinearity of a single plasmonic nanostructure which we call a split hole resonator (SHR). The SHR is the marriage of two basic elements of nanoplasmonics, a nanohole and a nanorod. A peak field intensity in the SHR occurs at the single tip of the nanorod inside the nanohole. The peak field is much stronger than those of the nanorod and nanohole, because the SHR field involves contributions from the following two field-enhancement mechanisms: (1) the excitation of surface plasmon resonances and (2) the lightning-rod effect. Here, we demonstrate the use of the SHR as a highly efficient nonlinear optical element for: (i) the generation of the third harmonic from a single SHR; (ii) the excitation of intense multiphoton luminescence from a single SHR.

© 2013 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(190.2620) Nonlinear optics : Harmonic generation and mixing
(310.4165) Thin films : Multilayer design
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Nonlinear Optics

Original Manuscript: February 12, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 30, 2013
Published: June 3, 2013

Pavel N. Melentiev, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, and Victor I. Balykin, "Giant optical nonlinearity of a single plasmonic nanostructure," Opt. Express 21, 13896-13905 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).
  3. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics, Series: Springer Series in Optical Sciences (Springer, 2007, Vol. 131).
  4. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6(4), 787 (1989). [CrossRef]
  5. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997). [CrossRef]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  7. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  8. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006). [CrossRef] [PubMed]
  9. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach,” Opt. Express15(14), 8871–8883 (2007). [CrossRef] [PubMed]
  10. C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  12. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  14. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997). [CrossRef] [PubMed]
  15. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  16. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000). [CrossRef]
  17. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985). [CrossRef] [PubMed]
  18. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  19. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003). [CrossRef] [PubMed]
  20. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012). [CrossRef] [PubMed]
  21. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third harmonic generation,” Laser Phys. Lett. 10 (to be published).
  22. L. D. Landau and L. P. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984, Vol. 8.).
  23. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.28(15), 1320–1322 (2003). [CrossRef] [PubMed]
  24. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004). [CrossRef]
  25. O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010). [CrossRef]
  26. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000). [CrossRef]
  27. P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009). [CrossRef] [PubMed]
  28. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express20(17), 19474–19483 (2012). [CrossRef] [PubMed]
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  30. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007). [CrossRef] [PubMed]
  31. M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011). [CrossRef] [PubMed]
  32. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012). [CrossRef] [PubMed]
  33. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011). [CrossRef] [PubMed]
  34. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012). [CrossRef]
  35. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express19(25), 25242–25254 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited