OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13917–13929

Three-dimensional accelerating electromagnetic waves

Miguel A. Bandres, Miguel A. Alonso, Ido Kaminer, and Mordechai Segev  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 13917-13929 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3046 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves
(070.3185) Fourier optics and signal processing : Invariant optical fields
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

Original Manuscript: March 18, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 15, 2013
Published: June 3, 2013

Miguel A. Bandres, Miguel A. Alonso, Ido Kaminer, and Mordechai Segev, "Three-dimensional accelerating electromagnetic waves," Opt. Express 21, 13917-13929 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32, 979–981 (2007). [CrossRef] [PubMed]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99, 213901 (2007). [CrossRef]
  3. J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip9, 1334–1336 (2009). [CrossRef] [PubMed]
  4. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324, 229–232 (2009). [CrossRef] [PubMed]
  5. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photonics3, 395–398 (2009). [CrossRef]
  6. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature494, 331–335 (2013). [CrossRef] [PubMed]
  7. A. Minovich, A. Klein, N. Janunts, T. Pertsch, D. Neshev, and Y. Kivshar, “Generation and Near-Field imaging of Airy surface plasmons,” Phys. Rev. Lett.107, 116802 (2011). [CrossRef] [PubMed]
  8. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett.101, 071110 (2012). [CrossRef]
  9. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nature photonics4, 103–106 (2010). [CrossRef]
  10. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105, 253901 (2010). [CrossRef]
  11. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express19, 23132–23139 (2011). [CrossRef] [PubMed]
  12. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-accelerating self-trapped optical beams,” Phys. Rev. Lett.106, 213903 (2011). [CrossRef] [PubMed]
  13. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett.108, 113903 (2012). [CrossRef] [PubMed]
  14. Y. Hu, Z. Sun, D. Bongiovanni, D. Song, C. Lou, J. Xu, Z. Chen, and R. Morandotti, “Reshaping the trajectory and spectrum of nonlinear Airy beams,” Opt. Lett.37, 3201–3203 (2012). [CrossRef] [PubMed]
  15. R. Bekenstein and M. Segev, “Self-accelerating optical beams in highly nonlocal nonlinear media,” Opt. Express19, 23706–23715 (2011). [CrossRef] [PubMed]
  16. M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett.33, 1678–1680 (2008). [CrossRef] [PubMed]
  17. J. A. Davis, M. J. Mintry, M. A. Bandres, and D. M. Cottrell, “Observation of accelerating parabolic beams,” Opt. Express16, 12866–12871 (2008). [CrossRef] [PubMed]
  18. M. A. Bandres, “Accelerating beams,” Opt. Lett.34, 3791–3793 (2009). [CrossRef] [PubMed]
  19. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47, 264–267 (1979). [CrossRef]
  20. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s equations,” Phys. Rev. Lett.108, 163901 (2012). [CrossRef] [PubMed]
  21. F. Courvoisier, A. Mathis, L. Froehly, R. Giust, L. Furfaro, P. A. Lacourt, M. Jacquot, and J. M. Dudley, “Sending femtosecond pulses in circles: highly nonparaxial accelerating beams,” Opt. Lett.37, 1736–1738 (2012). [CrossRef] [PubMed]
  22. I. Kaminer, E. Greenfield, R. Bekenstein, J. Nemirovsky, M. Segev, A. Mathis, L. Froehly, F. Courvoisier, and J. M. Dudley, “Accelerating beyond the horizon,” Opt. Photon. News23, 26–26 (2012). [CrossRef]
  23. M. A. Bandres and B. M. Rodríguez-Lara, “Nondiffracting accelerating waves: Weber waves and parabolic momentum,” New J. Phys.15, 013054 (2013). [CrossRef]
  24. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett.109, 193901 (2012). [CrossRef] [PubMed]
  25. P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett.109, 203902 (2012). [CrossRef] [PubMed]
  26. M. A. Alonso and M. A. Bandres, “Spherical fields as nonparaxial accelerating waves,” Opt. Lett.37, 5175–5177 (2012). [CrossRef] [PubMed]
  27. I. Kaminer, J. Nemirovsky, and M. Segev, “Self-accelerating self-trapped nonlinear beams of Maxwell’s equations,” Opt. Express20, 18827–18835 (2012). [CrossRef] [PubMed]
  28. P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett.37, 2820–2822 (2012). [CrossRef] [PubMed]
  29. C. P. Boyer, E. G. Kalnins, and W. Miller, “Symmetry and separation of variables for the Helmholtz and Laplace equations,” Nagoya Math. J60, 3580 (1976).
  30. L.-W. Li, M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan, “Computations of spheroidal harmonics with complex arguments: A review with an algorithm,” Phys. Rev. E58, 6792–6806 (1998). [CrossRef]
  31. J. Stratton, Electromagnetic Theory(Wiley-IEEE, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited