OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13938–13948

Edge scattering of surface plasmons excited by scanning tunneling microscopy

Yang Zhang, Elizabeth Boer-Duchemin, Tao Wang, Benoit Rogez, Geneviève Comtet, Eric Le Moal, Gérald Dujardin, Andreas Hohenau, Christian Gruber, and Joachim R. Krenn  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 13938-13948 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1723 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scattering of electrically excited surface plasmon polaritons (SPPs) into photons at the edges of gold metal stripes is investigated. The SPPs are locally generated by the inelastic tunneling current of a scanning tunneling microscope (STM). The majority of the collected light arising from the scattering of SPPs at the stripe edges is emitted in the forward direction and is collected at large angle (close to the air-glass critical angle, θc). A much weaker isotropic component of the scattered light gives rise to an interference pattern in the Fourier plane images, demonstrating that plasmons may be scattered coherently. An analysis of the interference pattern as a function of excitation position on the stripe is used to determine a value of 1.42 ± 0.18 for the relative plasmon wave vector (kSPP/k0) of the corresponding SPPs. From these results, we interpret the directional, large angle (θ~θc) scattering to be mainly from plasmons on the air-gold interface, and the diffuse scattering forming interference fringes to be dominantly from plasmons on the gold-substrate interface.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling
(300.2140) Spectroscopy : Emission
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: March 25, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 16, 2013
Published: June 3, 2013

Yang Zhang, Elizabeth Boer-Duchemin, Tao Wang, Benoit Rogez, Geneviève Comtet, Eric Le Moal, Gérald Dujardin, Andreas Hohenau, Christian Gruber, and Joachim R. Krenn, "Edge scattering of surface plasmons excited by scanning tunneling microscopy," Opt. Express 21, 13938-13948 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  4. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999). [CrossRef]
  5. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000). [CrossRef]
  6. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  7. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007). [CrossRef] [PubMed]
  8. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011). [CrossRef] [PubMed]
  9. C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012). [CrossRef] [PubMed]
  10. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003). [CrossRef]
  11. J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos Trans A Math Phys Eng Sci362(1817), 739–756 (2004). [CrossRef] [PubMed]
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001). [CrossRef]
  13. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005). [CrossRef]
  14. E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011). [CrossRef] [PubMed]
  15. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006). [CrossRef]
  16. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007). [CrossRef] [PubMed]
  17. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009). [CrossRef] [PubMed]
  18. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011). [CrossRef] [PubMed]
  19. P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).
  20. B. Steinberger, “The passive and dynamic control of surface plasmon polariton propagation,” Ph.D thesis (Karl-Franzens-University Graz, 2007).
  21. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009). [CrossRef] [PubMed]
  22. J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J.-C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B29(2), 226–231 (2012). [CrossRef]
  23. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991). [CrossRef] [PubMed]
  24. S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004). [CrossRef]
  25. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011). [CrossRef] [PubMed]
  26. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011). [CrossRef] [PubMed]
  27. L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys.44(46), 464002 (2011). [CrossRef]
  28. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, 1993).
  29. Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999). [CrossRef]
  30. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).
  31. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21(6), 1210–1215 (2004). [CrossRef]
  32. Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010). [CrossRef] [PubMed]
  33. T. Wang, “Electrical excitation of surface plasmons with a scanning tunneling microscope,” Ph.D thesis (Université Paris-Sud, 2012).
  34. V. B. Zon, “Reflection, refraction, and transformation into photons of surface plasmons on a metal wedge,” J. Opt. Soc. Am. B24(8), 1960–1967 (2007). [CrossRef]
  35. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol.2(7), 426–429 (2007). [CrossRef] [PubMed]
  36. S. Ravets, J. C. Rodier, B. Ea Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B26(12), B28–B33 (2009). [CrossRef]
  37. S. A. Guebrou, J. Laverdant, C. Symonds, S. Vignoli, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett.37(11), 2139–2141 (2012). [CrossRef] [PubMed]
  38. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  39. R. Innes and J. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F Met. Phys.17(1), 277–287 (1987). [CrossRef]
  40. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  41. P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano6(11), 10107–10114 (2012). [CrossRef] [PubMed]
  42. Theoretically it may be shown that by assuming that the scattered light is driven by a weighted coherent sum of SPP modes from both interfaces, the effectively observed kSPP/k0 determined from the above fringe shift method is neither that of the air/Au mode nor that of the Au/ITO/glass mode but a weighted average of the two. If both modes mix at the edge, there is some change in fringe visibility (due to partly constructive or destructive interference) and the fringes in the Fourier plane shift as if only one SPP with an effective kSPP is excited.
  43. M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited