OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13949–13957

Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space

Yan Guo, Bo Zhao, and Jianjun Yang  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 13949-13957 (2013)
http://dx.doi.org/10.1364/OE.21.013949


View Full Text Article

Enhanced HTML    Acrobat PDF (1988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrate that a single bare subwavelength metal slit without any surrounding corrugations can have a capability to steer the incident light into focusing patterns by introducing a high index in the transmission half-space. The focusing properties are identified to depend on both the slit width and the output permittivity. The underlying physics lies in the interference of quasi-cylindrical waves scattered from the slit, and our proposed model agrees well with the simulation results. This finding is believed to inspire some novel ideas for the nano-optics design.

© 2013 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 2, 2013
Revised Manuscript: May 18, 2013
Manuscript Accepted: May 20, 2013
Published: June 3, 2013

Citation
Yan Guo, Bo Zhao, and Jianjun Yang, "Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space," Opt. Express 21, 13949-13957 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-13949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaem, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett.95(26), 263902 (2005). [CrossRef] [PubMed]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  4. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007). [CrossRef]
  5. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett.34(17), 2569–2571 (2009). [CrossRef] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  7. L.-B. Yu, D.-Z. Liu, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B71(4), 041405 (2005). [CrossRef]
  8. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004). [CrossRef]
  9. X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett.31(9), 1322–1324 (2006). [CrossRef] [PubMed]
  10. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009). [CrossRef] [PubMed]
  11. G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B79(20), 201103 (2009). [CrossRef]
  12. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B69(12), 121402 (2004). [CrossRef]
  13. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett.92(11), 113903 (2004). [CrossRef] [PubMed]
  14. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B90(1), 97–99 (2008). [CrossRef]
  15. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  16. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008). [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  18. H. Liu and P. Lalanne, “Light scattering by metallic surface with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010). [CrossRef]
  19. P. Lalanne, J. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009). [CrossRef]
  20. C. H. Gan, L. Lalouat, P. Lalanne, and L. Aigouy, “Optical quasicylindrical waves at dielectric interfaces,” Phys. Rev. B83(8), 085422 (2011). [CrossRef]
  21. S. Ravets, J. C. Rodier, B. Ea Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B26(12), B28–B33 (2009). [CrossRef]
  22. H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett.10(10), 4111–4116 (2010). [CrossRef] [PubMed]
  23. For a lineup arrangement of N point sources with a between spacing of d, the constructive interference of their emitted waves requires that the maximum phase difference among them should satisfy the relationship of k(Nd)2+f2−k f=(2n+1)π2, where k is the wavevector of the propagating wave, f is the distance along the central perpendicular of the source plane, n is an integer. From the above mentioned formula, we can derive f expression to represent the spatial position of the focal spot.
  24. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  25. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  26. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett.7(6), 1697–1700 (2007). [CrossRef] [PubMed]
  27. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited