OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13958–13968

CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide

Stevan S. Djordjevic, Kuanping Shang, Binbin Guan, Stanley T. S. Cheung, Ling Liao, Juthika Basak, Hai-Feng Liu, and S. J. B. Yoo  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 13958-13968 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1907 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design, fabrication and characterization of athermal nano-photonic silicon ring modulators. The athermalization method employs compensation of the silicon core thermo-optic contribution with that from the amorphous titanium dioxide (a-TiO2) overcladding with a negative thermo-optic coefficient. We developed a new CMOS-compatible fabrication process involving low temperature RF magnetron sputtering of high-density and low-loss a-TiO2 that can withstand subsequent elevated-temperature CMOS processes. Silicon ring resonators with 275 nm wide rib waveguide clad with a-TiO2 showed near complete athermalization and moderate optical losses. Small-signal testing of the micro-resonator modulators showed high extinction ratio and gigahertz bandwidth.

© 2013 OSA

OCIS Codes
(160.3130) Materials : Integrated optics materials
(230.0230) Optical devices : Optical devices
(230.4110) Optical devices : Modulators

ToC Category:
Integrated Optics

Original Manuscript: April 15, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 29, 2013
Published: June 3, 2013

Stevan S. Djordjevic, Kuanping Shang, Binbin Guan, Stanley T. S. Cheung, Ling Liao, Juthika Basak, Hai-Feng Liu, and S. J. B. Yoo, "CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide," Opt. Express 21, 13958-13968 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009). [CrossRef]
  2. V.  Raghunathan, W. N.  Ye, J.  Hu, T.  Izuhara, J.  Michel, L.  Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010). [CrossRef] [PubMed]
  3. P.  Alipour, E. S.  Hosseini, A. A.  Eftekhar, B.  Momeni, A.  Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35(20), 3462–3464 (2010). [CrossRef] [PubMed]
  4. V. Raghunathan, J. Hu, W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010).
  5. C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004). [CrossRef]
  6. C.  Decker K.  Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999). [CrossRef]
  7. I. M.  Hodge, “Physical aging in polymer glasses,” Science 267(5206), 1945–1947 (1995). [PubMed]
  8. B. Guha, B. B. Kyotoku, and M. Lipson, “CMOS compatible athermal silicon microring resonators,” arXiv preprint arXiv:0911.3444 (2009).
  9. B.  Guha, K.  Preston, M.  Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012). [CrossRef] [PubMed]
  10. K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible Titanium Dioxide Deposition for Athermalization of Silicon Waveguides,” accepted for publication in Conference on Lasers and Electro-Optics (CLEO), Paper CF2I.5 (San Jose, 2013).
  11. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, C. Qin, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “Athermal Silicon Ring Modulators Clad with Titanium Dioxide by RF Magnetron Sputtering,” Paper TuC4, Optical Interconnects Conference, 2012 IEEE (Santa Fe, 2013)
  12. O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006). [CrossRef]
  13. Y. Ma, Y. Ono, and S. T. Hsu, “Deposition and treatment of TiO2 as an alternative for ultrathin gate dielectrics,” in MRS Proceedings (Cambridge University Press, 1999). [CrossRef]
  14. H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011). [CrossRef]
  15. X.  Song C. G.  Takoudis, “Cyclic Chemical-Vapor-Deposited TiO2/ Al2O3 Film Using Trimethyl Aluminum, Tetrakis (diethylamino) titanium, and O2,” J. Electrochem. Soc. 154(8), G177–G182 (2007). [CrossRef]
  16. N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997). [CrossRef]
  17. J.  Heller, “Reactive sputtering of metals in oxidizing atmospheres,” Thin Solid Films 17(2), 163–176 (1973). [CrossRef]
  18. C.  Ottermann K.  Bange, “Correlation between the density of TiO< sub> 2 films and their properties,” Thin Solid Films 286(1-2), 32–34 (1996). [CrossRef]
  19. D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992). [CrossRef]
  20. S. T. Cheung, B. Guan, S. S. Djordjevic, K. Okamoto, and S. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” in CLEO: Science and Innovations(Optical Society of America, 2012).
  21. L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010). [CrossRef]
  22. Q.  Xu, S.  Manipatruni, B.  Schmidt, J.  Shakya, M.  Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  23. B. K.  Garside, J. P.  Marton, T.  Tricker, “Measurement of distributed losses in optical waveguides: a new technique,” Appl. Opt. 30(6), 689–695 (1991). [CrossRef] [PubMed]
  24. B. R. Moss, S. Chen, M. Georgas, J. Shainline, J. S. Orcutt, J. C. Leu, M. Wade, C. Yu-Hsin, K. Nammari, W. Xiaoxi, L. Hanqing, R. Ram, M. A. Popovic, and V. Stojanovic, “A 1.23pJ/b 2.5Gb/s monolithically integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International(2013), 126–127.
  25. A. C.  Turner-Foster, M. A.  Foster, J. S.  Levy, C. B.  Poitras, R.  Salem, A. L.  Gaeta, M.  Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  26. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Lasers and Electro-Optics Society,2007. LEOS 2007. The 20th Annual Meeting of the IEEE(IEEE, 2007), 537–538. [CrossRef]
  27. L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited