OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 13969–13974

Quasi-phase-matched second-harmonic Talbot self-imaging in a 2D periodically-poled LiTaO3 crystal

Dongmei Liu, Dunzhao Wei, Yong Zhang, Jiong Zou, X. P. Hu, S. N. Zhu, and Min Xiao  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 13969-13974 (2013)
http://dx.doi.org/10.1364/OE.21.013969


View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the improved second-harmonic Talbot self-imaging through the quasi-phase-matching technique in a 2D periodically-poled LiTaO3 crystal. The domain structure not only composes a nonlinear optical grating which is necessary to realize nonlinear Talbot self-imaging, but also provides reciprocal vectors to satisfy the phase-matching condition for second-harmonic generation. Our experimental results show that quasi-phase-matching can improve the intensity of the second-harmonic Talbot self-imaging by a factor of 21.

© 2013 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 24, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 28, 2013
Published: June 3, 2013

Citation
Dongmei Liu, Dunzhao Wei, Yong Zhang, Jiong Zou, X. P. Hu, S. N. Zhu, and Min Xiao, "Quasi-phase-matched second-harmonic Talbot self-imaging in a 2D periodically-poled LiTaO3 crystal," Opt. Express 21, 13969-13974 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-13969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt.27, 1–108 (1989). [CrossRef]
  2. J. M. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon.5(1), 83–130 (2013). [CrossRef]
  3. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005). [CrossRef] [PubMed]
  4. X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011). [CrossRef] [PubMed]
  5. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008). [CrossRef] [PubMed]
  6. Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett.104(18), 183901 (2010). [CrossRef] [PubMed]
  7. Z. H. Chen, D. M. Liu, Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Fractional second-harmonic Talbot effect,” Opt. Lett.37(4), 689–691 (2012). [CrossRef] [PubMed]
  8. D. M. Liu, Y. Zhang, Z. H. Chen, J. M. Wen, and M. Xiao, “Acoustic-optic tunable second-harmonic Talbot effect based on peripdocally poled LiNbO3 crystals,” J. Opt. Soc. Am. B29(12), 3325–3329 (2012). [CrossRef]
  9. Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006). [CrossRef]
  10. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, “Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm,” Opt. Lett.32(20), 3035–3037 (2007). [CrossRef] [PubMed]
  11. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998). [CrossRef]
  12. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006). [CrossRef]
  13. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008). [CrossRef] [PubMed]
  14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009). [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  16. P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003). [CrossRef]
  17. K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys.80(11), 6561–6563 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited