OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14008–14016

Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset

J. Biesheuvel, D. W. E. Noom, E. J. Salumbides, K. T. Sheridan, W. Ubachs, and J. C. J. Koelemeij  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14008-14016 (2013)
http://dx.doi.org/10.1364/OE.21.014008


View Full Text Article

Enhanced HTML    Acrobat PDF (3967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ∼ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

© 2013 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(140.3600) Lasers and laser optics : Lasers, tunable
(140.4780) Lasers and laser optics : Optical resonators
(300.6360) Spectroscopy : Spectroscopy, laser
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 4, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 23, 2013
Published: June 4, 2013

Citation
J. Biesheuvel, D. W. E. Noom, E. J. Salumbides, K. T. Sheridan, W. Ubachs, and J. C. J. Koelemeij, "Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset," Opt. Express 21, 14008-14016 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14008


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. S. Johnson, J. M. Hogan, S.-w. Ciow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett.35, 745–747 (2010). [CrossRef] [PubMed]
  2. R. Houtz, C. Chan, and H. Müller, “Wideband efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission line,” Opt. Express17, 19235–19240 (2009). [CrossRef]
  3. S. Hisatake, T. Konishi, and T. Nagatsuma, “Multiplication of optical frequency shift by cascaded electro-optic traveling phase gratings operating above 10 GHz,” Opt. Lett.36, 1350–1352 (2011). [CrossRef] [PubMed]
  4. D. Haubrich and R. Wynands, “A modified commercial Ti:sapphire laser with 4 kHz rms linewidth,” Opt. Comm.123, 558–562 (1996). [CrossRef]
  5. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum.70, 242–243, (1999). [CrossRef]
  6. F. Rohde, M. Almendros, C. Schuck, J. Huwer, M. Hennrich, and J. Eschner, “A diode laser stabilization scheme for 40Ca+single-ion spectroscopy,” J. Phys. B43, 115401 (2010). [CrossRef]
  7. T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. of Mod. Phys.78, 1297–1309 (2006). [CrossRef]
  8. I. Velchev, R. van Dierendock, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc.187, 21–27 (1998). [CrossRef] [PubMed]
  9. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.67, 063112 (2005). [CrossRef]
  10. E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born-Oppenheimer corrections by new measurements of transitions of 129I2 and 127I129I in the B3Π − X1Σg band system,” Eur. Phys. J. D47, 171–179 (2008). [CrossRef]
  11. H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. OReilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free high resolution spectral atlas of iodine molecule (Japan Society for the Promotion of Science, 2000).
  12. H. Knöckel, B. Bodermann, and B. Tiemann, “High precision description of the rovibronic structure of the I2 B-X spectrum,” Eur. Phys. J. D28, 199–209 (2004). [CrossRef]
  13. We used the “IodineSpec” program, kindly provided to us by H. Knöckel (Leibniz University, Hannover). See also B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. J. D.19, 13–44 (2002). [CrossRef]
  14. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+optical clocks,” Phys. Rev. Lett.104, 070802 (2010). [CrossRef] [PubMed]
  15. S.-w. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ħk Large Area Atom Interferometers,” Phys. Rev. Lett.107, 130403 (2011). [CrossRef] [PubMed]
  16. R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Lett. A75, 042329 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited