OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14017–14035

Effect of pulse depletion in a Brillouin optical time-domain analysis system

Luc Thévenaz, Stella Foaleng Mafang, and Jie Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14017-14035 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Energy transfer between the interacting waves in a distributed Brillouin sensor can result in a distorted measurement of the local Brillouin gain spectrum, leading to systematic errors. It is demonstrated that this depletion effect can be precisely modelled. This has been validated by experimental tests in an excellent quantitative agreement. Strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 8, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 27, 2013
Published: June 4, 2013

Luc Thévenaz, Stella Foaleng Mafang, and Jie Lin, "Effect of pulse depletion in a Brillouin optical time-domain analysis system," Opt. Express 21, 14017-14035 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China3(1), 13–21 (2010). [CrossRef]
  2. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol.21(9), 094024 (2010). [CrossRef]
  3. M. A. Soto, M. Taki, G. Bolognini, and F. D. Pasquale, “Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photon. Technol. Lett.24(20), 1823–1826 (2012). [CrossRef]
  4. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, and M. Gonzalez-Herraez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012). [CrossRef]
  5. A. Fellay, L. Thévenaz, M. Facchini, and P. A. Robert, “Limitation of Brillouin time-domain analysis by Raman scattering,” in 5th Optical Fibre Measurement Conference, (Université de Nantes, 1999), 110–113.
  6. S. M. Foaleng and L. Thevenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE7753, 77539V, 77539V-4 (2011). [CrossRef]
  7. M. N. Alahbabi, Y. T. Cho, T. P. Newson, P. C. Wait, and A. H. Hartog, “Influence of modulation instability on distributed optical fiber sensors based on spontaneous Brillouin scattering,” J. Opt. Soc. Am. B21(6), 1156–1160 (2004). [CrossRef]
  8. D. Alasia, M. Gonzalez Herraez, L. Abrardi, S. Martin-Lopez, and L. Thevenaz, “Detrimental effect of modulation instability on distributed optical fiber sensors using stimulated Brillouin scattering,” Proc. SPIE5855, 587–590 (2005). [CrossRef]
  9. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995). [CrossRef]
  10. E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, and H. Bartelt, “The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors,” Meas. Sci. Technol.10(2), 112–116 (1999). [CrossRef]
  11. A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005). [CrossRef]
  12. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010). [CrossRef] [PubMed]
  13. Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010). [CrossRef] [PubMed]
  14. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett.21(10), 758–760 (1996). [CrossRef] [PubMed]
  15. S. Diaz, S. Mafang-Foaleng, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008). [CrossRef]
  16. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009). [CrossRef]
  17. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011). [CrossRef] [PubMed]
  18. Y. Dong, X. Bao, and L. Chen, “High performance Brillouin strain and temperature sensor based on frequency division multiplexing using nonuniform fibers over 75km fiber,” Proc. SPIE7753, 77533H, 77533H-4 (2011). [CrossRef]
  19. A. Zornoza, A. Minardo, R. Bernini, A. Loayssa, and L. Zeni, “Pulsing the probe wave to reduce nonlocal effects in Brillouin optical time-domain analysis (BOTDA) sensors,” IEEE Sens. J.11(4), 1067–1068 (2011). [CrossRef]
  20. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited