OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14056–14065

High visibility two-photon interference with classical light

Peilong Hong, Lei Xu, Zhaohui Zhai, and Guoquan Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14056-14065 (2013)
http://dx.doi.org/10.1364/OE.21.014056


View Full Text Article

Enhanced HTML    Acrobat PDF (1504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon interference with independent classical sources, in which superposition of two indistinguishable two-photon paths plays a key role, is of limited visibility with a maximum value of 50%. By using a random-phase grating to modulate the wavefront of a coherent light, we introduce superposition of multiple indistinguishable two-photon paths, which enhances the two-photon interference effect with a signature of visibility exceeding 50%. The result shows the importance of phase control in the control of high-order coherence of classical light.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

History
Original Manuscript: May 2, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: May 28, 2013
Published: June 5, 2013

Citation
Peilong Hong, Lei Xu, Zhaohui Zhai, and Guoquan Zhang, "High visibility two-photon interference with classical light," Opt. Express 21, 14056-14065 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14056


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Dirac, The Principles of Quantum Mechanics, 2nd edition (Oxford University, 1935).
  2. R. Brown and R. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956). [CrossRef]
  3. R. Brown and R. Twiss, “A test of new type of stellar interferometer on sirius,” Nature178(4541), 1046–1048 (1956). [CrossRef]
  4. U. Fano, “Quantum theory of interference effects in the mixing of light from phase-independent sources,” Am. J. Phys.29(8), 539–545 (1961). [CrossRef]
  5. J. Liu and G. Zhang, “Unified interpretation for second-order subwavelength interference based on Feynmans path-integral theory,” Phys. Rev. A82(1), 013822 (2010). [CrossRef]
  6. L. Mandel, “Photon interference and correlation effects produced by independent quantum sources,” Phys. Rev. A28(2), 929–943 (1983). [CrossRef]
  7. H. Paul, “Interference between independent photons,” Rev. Mod. Phys.58(1), 209–231 (1986). [CrossRef]
  8. Z. Ou, “Quantum theory of fourth-order interference,” Phys. Rev. A37(5), 1607–1619 (1988). [CrossRef] [PubMed]
  9. D. Klyshko, “Quantum optics: quantum, classical, and metaphysical aspects,” Phys. Usp.37(11), 1097–1123 (1994). [CrossRef]
  10. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett.74(18), 3600–3603 (1995). [CrossRef] [PubMed]
  11. E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett.82(14), 2868–2871 (1999). [CrossRef]
  12. K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett.89(21), 213601 (2002). [CrossRef] [PubMed]
  13. G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett.68(5), 618–624 (2004). [CrossRef]
  14. J. Xiong, D. Cao, F. Huang, H. Li, X. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett.94(17), 173601 (2005). [CrossRef] [PubMed]
  15. Yan-Hua Zhai, Xi-Hao Chen, Da Zhang, and Ling-An Wu, “Two-photon interference with true thermal light,” Phys. Rev. A72(4),043805 (2005). [CrossRef]
  16. I. Agafonov, M. Chekhova, T. Iskhakov, and A. Penin, “High-visibility multiphoton interference of Hanbury Brown-Twiss type for classical light,” Phys. Rev. A77(5), 053801 (2008). [CrossRef]
  17. D. Cao, J. Xiong, S. Zhang, L. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett.92(20), 201102 (2008). [CrossRef]
  18. X. Chen, I. Agafonov, K. Luo, Q. Liu, R. Xian, M. Chekhova, and L. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett.35(8), 1166–1168 (2010). [CrossRef] [PubMed]
  19. Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A81(4), 043831 (2010). [CrossRef]
  20. R. Glauber, “The quantum theory of optical coherence,” Phys. Rev.130(6), 2529–2539 (1963). [CrossRef]
  21. R. Glauber, “Coherent and incoherent state of radiation field,” Phys. Rev.131(6), 2766–2788 (1963). [CrossRef]
  22. G. Brooker, Modern Classical Optics (Oxford University, 2003).
  23. Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nature Photonics4, 721–726 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited