OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14066–14073

Modulation transfer spectroscopy mediated by spontaneous emission

Sang Eon Park and Heung-Ryoul Noh  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14066-14073 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the polarization dependence of the spectrum in modulation transfer spectroscopy for the transitions from the lower ground state (Fg = 1) of 87Rb atoms. We measured the spectra for the two polarization configurations where the carrier and probe beams were linearly polarized in parallel or perpendicular directions. The measured spectra were in excellent agreement with calculated results. The spectra were strongly dependent on the polarization configurations. In particular, the signal for parallel polarization configuration was generated via an incoherent process mediated by spontaneous emission.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing

ToC Category:

Original Manuscript: April 12, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 28, 2013
Published: June 5, 2013

Sang Eon Park and Heung-Ryoul Noh, "Modulation transfer spectroscopy mediated by spontaneous emission," Opt. Express 21, 14066-14073 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Demtröder, Laser Spectroscopy (Springer, 1998).
  2. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36(20), 1170–1173 (1976). [CrossRef]
  3. K. L. Corwin, Z. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt.37(15), 3295–3298 (1998). [CrossRef]
  4. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B41(8), 085401 (2008). [CrossRef]
  5. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980). [CrossRef] [PubMed]
  6. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett.7(11), 537–539 (1982). [CrossRef] [PubMed]
  7. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas.44(2), 155–158 (1995). [CrossRef]
  8. E. B. Kim, S. E. Park, C. Y. Park, Y. H. Park, D.-S. Yee, T. Y. Kwon, H. S. Lee, and H. Cho, “Absolute frequency measurement of F= 4 → F′= 5 transition line of cesium using amplified optical frequency comb,” IEEE Trans. Instrum. Meas.56(2), 448–452 (2007). [CrossRef]
  9. A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A25(5), 2606–2621 (1982). [CrossRef]
  10. E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun.120, 91–97 (1995). [CrossRef]
  11. F. Bertinetto, P. Cordiale, G. Galzerano, and E. Bava, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas.50(2), 490–492 (2001). [CrossRef]
  12. J. Zhang, D. Wei, C. Xie, and K. Peng, “Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum,” Opt. Express11(11), 1338–1344 (2003). [CrossRef] [PubMed]
  13. D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19(10), 105601 (2008). [CrossRef]
  14. L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45(6), 065002 (2012). [CrossRef]
  15. V. Negnevitsky and L. D. Turner, “Wideband laser lockng to an atomic reference with modulation transfer spectroscopy,” Opt. Express21(3), 3103–3113 (2013). [CrossRef] [PubMed]
  16. L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for a two-level atomic system with a non-cycling transition,” J. Phys. Soc. Jpn.80(7), 074301 (2011). [CrossRef]
  17. H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express19(23), 23444–23452 (2011). [CrossRef] [PubMed]
  18. J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1line,” J. Phys. B29(12), 2629–2643 (1996). [CrossRef]
  19. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B41(15), 155004 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited