OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14074–14083

Fast response in-line gas sensor using C-type fiber and Ge-doped ring defect photonic crystal fiber

Sahar Hosseinzadeh Kassani, Jiyoung Park, Yongmin Jung, Jens Kobelke, and Kyunghwan Oh  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14074-14083 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An in-line chemical gas sensor was proposed and experimentally demonstrated using a new C-type fiber and a Ge-doped ring defect photonic crystal fiber (PCF). The C-type fiber segment served as a compact gas inlet/outlet directly spliced to PCF, which overcame previous limitations in packaging and dynamic responses. C-type fiber was prepared by optimizing drawing process for a silica tube with an open slot. Splicing conditions for SMF/C-type fiber and PCF/C-type fiber were experimentally established to provide an all-fiber sensor unit. To enhance the sensitivity and light coupling efficiency we used a special PCF with Ge-doped ring defect to further enhance the sensitivity and gas flow rate. Sensing capability of the proposed sensor was investigated experimentally by detecting acetylene absorption lines.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: April 3, 2013
Revised Manuscript: May 29, 2013
Manuscript Accepted: May 31, 2013
Published: June 5, 2013

Sahar Hosseinzadeh Kassani, Jiyoung Park, Yongmin Jung, Jens Kobelke, and Kyunghwan Oh, "Fast response in-line gas sensor using C-type fiber and Ge-doped ring defect photonic crystal fiber," Opt. Express 21, 14074-14083 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Kim, H. K. Kim, U. C. Paek, B. H. Lee, and J.-B. Eom, “The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties,” J. Opt. Soc. Korea7(2), 79–83 (2003). [CrossRef]
  2. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001). [CrossRef]
  3. V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Opt. Express14(18), 8413–8418 (2006). [CrossRef] [PubMed]
  4. V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006). [CrossRef]
  5. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999). [CrossRef]
  6. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004). [CrossRef]
  7. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and practical handling,” J. Lightwave Technol.22(1), 11–15 (2004). [CrossRef]
  8. I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Appl. Opt.49(24), 4604–4609 (2010). [CrossRef] [PubMed]
  9. K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express12(17), 4080–4087 (2004). [CrossRef] [PubMed]
  11. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt.42(18), 3509–3515 (2003). [CrossRef] [PubMed]
  12. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007). [CrossRef] [PubMed]
  13. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15(19), 11843–11848 (2007). [CrossRef] [PubMed]
  14. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express14(26), 13056–13066 (2006). [CrossRef] [PubMed]
  15. Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008). [CrossRef]
  16. J. Park, S. Lee, S. Kim, and K. Oh, “Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center,” Opt. Express19(3), 1921–1929 (2011). [CrossRef] [PubMed]
  17. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007). [CrossRef]
  18. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” J. Quantum Electron.38(7), 927–933 (2002). [CrossRef]
  19. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, 4 (Kluwer Academic, 1999), Chapter 2.
  20. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B17(7), 1263–1270 (2000). [CrossRef]
  21. S. L. Gilbert, W. C. Swann, Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength (NIST special publication, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited