OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14084–14089

Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity

Ying Wang, D. N. Wang, Chao Wang, and Tianyi Hu  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14084-14089 (2013)
http://dx.doi.org/10.1364/OE.21.014084


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a pressure sensor based on a micro air bubble at the end facet of a single mode fiber fusion spliced with a silica tube. When immersed into the liquid such as water, the air bubble essentially acts as a Fabry-Pérot interferometer cavity. Such a cavity can be compressed by the environmental pressure and the sensitivity obtained is >1000 nm/kPa, at least one order of magnitude higher than that of the diaphragm-based fiber-tip sensors reported so far. The compressible Fabry-Pérot interferometer cavity developed is expected to have potential applications in highly sensitive pressure and/or acoustic sensing.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

ToC Category:
Sensors

History
Original Manuscript: March 19, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: May 25, 2013
Published: June 5, 2013

Citation
Ying Wang, D. N. Wang, Chao Wang, and Tianyi Hu, "Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity," Opt. Express 21, 14084-14089 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14084


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993). [CrossRef]
  2. D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011). [CrossRef]
  3. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett.36(3), 412–414 (2011). [CrossRef] [PubMed]
  4. Z. Liu, M.-L. V. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express20(19), 21749–21757 (2012). [CrossRef] [PubMed]
  5. T. W. Kao and H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor,” Opt. Lett.21(8), 615–617 (1996). [CrossRef] [PubMed]
  6. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H.-P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19(25), 25057–25065 (2011). [CrossRef] [PubMed]
  7. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  8. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010). [CrossRef] [PubMed]
  9. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30(15), 1923–1925 (2005). [CrossRef] [PubMed]
  10. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett.38(3), 269–271 (2013). [CrossRef] [PubMed]
  11. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol.19(10), 1495–1501 (2001). [CrossRef]
  12. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett.17(2), 447–449 (2005). [CrossRef]
  13. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett.30(16), 2071–2073 (2005). [CrossRef] [PubMed]
  14. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett.31(7), 885–887 (2006). [CrossRef] [PubMed]
  15. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express18(9), 9006–9014 (2010). [CrossRef] [PubMed]
  16. E. Cibula, S. Pevec, B. Lenardič, É. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express17(7), 5098–5106 (2009). [CrossRef] [PubMed]
  17. H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express20(13), 14573–14583 (2012). [CrossRef] [PubMed]
  18. F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett.37(9), 1505–1507 (2012). [CrossRef] [PubMed]
  19. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett.37(2), 133–135 (2012). [CrossRef] [PubMed]
  20. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett.37(13), 2493–2495 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited