OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14090–14096

The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays

Chia-Yang Tsai, Kai-Hao Chang, Che-Yao Wu, and Po-Tsung Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14090-14096 (2013)
http://dx.doi.org/10.1364/OE.21.014090


View Full Text Article

Enhanced HTML    Acrobat PDF (2008 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate both numerically and experimentally the optical properties and biosensing of gold elliptical nanoring (ENR) arrays with various aspect ratios. The gold ENR exhibits a strong localized surface plasmon bonding mode in near-infrared region, whose peak wavelength is red-shifted as increasing the aspect ratio under longitudinal and transverse polarizations. Furthermore, the disk- and hole-like optical properties for longitudinal and transverse modes are observed, which cause different behaviors in field intensity enhancement. For biomolecule sensing, we find that both modes show increased surface sensitivities when enlarging the aspect ratio of gold ENR.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 29, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 28, 2013
Published: June 5, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Chia-Yang Tsai, Kai-Hao Chang, Che-Yao Wu, and Po-Tsung Lee, "The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays," Opt. Express 21, 14090-14096 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  2. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  5. Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett.100(2), 021102 (2012). [CrossRef]
  6. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  7. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11(2), 482–487 (2011). [CrossRef] [PubMed]
  8. G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B77(3), 035101 (2008). [CrossRef]
  9. M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett.8(10), 3357–3363 (2008). [CrossRef] [PubMed]
  10. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11(4), 1657–1663 (2011). [CrossRef] [PubMed]
  11. M. Zhang, X. Zhou, and Y. Fu, “Plasmonic resonance excited extinction spectra of cross-shaped Ag nanoparticles,” Plasmonics5(4), 355–361 (2010). [CrossRef]
  12. P. Y. Chung, T. H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors,” Appl. Phys. Lett.96(26), 261108 (2010). [CrossRef] [PubMed]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  14. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology20(46), 465203 (2009). [CrossRef] [PubMed]
  15. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003). [CrossRef] [PubMed]
  16. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000). [CrossRef]
  17. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010). [CrossRef] [PubMed]
  18. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011). [CrossRef] [PubMed]
  19. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano4(5), 2649–2654 (2010). [CrossRef] [PubMed]
  20. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  21. R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films313–314, 394–397 (1998). [CrossRef]
  22. F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010). [CrossRef]
  23. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys.123(22), 221103 (2005). [CrossRef] [PubMed]
  24. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006). [CrossRef] [PubMed]
  25. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited