OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14146–14151

Integrated polarization beam splitter with relaxed fabrication tolerances

D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H.-G. Bach, A. G. Steffan, and Í. Molina-Fernández  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14146-14151 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO2 Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.

© 2013 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: April 8, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 23, 2013
Published: June 6, 2013

D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H.-G. Bach, A. G. Steffan, and Í. Molina-Fernández, "Integrated polarization beam splitter with relaxed fabrication tolerances," Opt. Express 21, 14146-14151 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007). [CrossRef]
  2. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16, 753–791 (2007). [CrossRef]
  3. W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express20, 10163–10169 (2012). [CrossRef] [PubMed]
  4. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003). [CrossRef]
  5. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25, 740–746 (2007). [CrossRef]
  6. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012). [CrossRef]
  7. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994). [CrossRef]
  8. J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012). [CrossRef]
  9. C. Alonso-Ramos, S. Romero-García, A. Ortega-Moñux, I. Molina-Fernández, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett.37, 335–337 (2012). [CrossRef] [PubMed]
  10. C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011). [CrossRef]
  11. D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol.29, 1808–1817 (2011). [CrossRef]
  12. C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012). [CrossRef] [PubMed]
  13. K. Kojima, W. Yuan, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “An mmi-based polarization splitter using patterned metal and tilted joint,” Opt. Express20, B371–B376 (2012). [CrossRef] [PubMed]
  14. B. Lahiri, R. Dylewicz, R. M. D. L. Rue, and N. P. Johnson, “Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (srrs),” Opt. Express18, 11202–11208 (2010). [CrossRef] [PubMed]
  15. C. Yao, H.-G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, and R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express20, 18248–18253 (2012). [CrossRef] [PubMed]
  16. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995). [CrossRef]
  17. R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009). [CrossRef]
  18. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phy. JETP2, 466 (1956).
  19. D. Poitras, J. A. Dobrowolski, T. Cassidy, and S. Moisa, “Ion-beam etching for the precise manufacture of optical coatings,” Appl. Opt.42, 4037–4044 (2003). [CrossRef] [PubMed]
  20. P. Runge and R. Zhang, “Deposition of Periodic Layer Structures,” Private Communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited