OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14152–14158

Target detection in turbid medium using polarization-based range-gated technology

Jinge Guan and Jingping Zhu  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14152-14158 (2013)
http://dx.doi.org/10.1364/OE.21.014152


View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Range-gated technology is well known for its good reliability, large field of view (FOV) and low cost in target detection through scattering or turbid medium. However, the tail-gating technology suffers from low signal-to-noise ratio in high turbidity levels due to superposition of photons multiply scattered from the medium and that reflected from the target. In this paper, polarization properties of multiply scattered photons emerging from the turbid medium are studied. Results demonstrate that diffusive photons are almost completely depolarized with no diattenuation and retardance. We combined the tail-gated technology with polarization detection method to effectively image in high level of turbidity. This approach showed about two times enhancement in image contrast as compared with the conventional range-gated technology.

© 2013 OSA

OCIS Codes
(290.5855) Scattering : Scattering, polarization
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Remote Sensing

History
Original Manuscript: April 3, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 25, 2013
Published: June 6, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Jinge Guan and Jingping Zhu, "Target detection in turbid medium using polarization-based range-gated technology," Opt. Express 21, 14152-14158 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Swartz, “Laser range gated underwater imaging advances,” IEEE J. Oceanic Eng.19, 722–727 (1994).
  2. C. Tan, A. Sluzek, and G. Seet, “Model of gated imaging in turbid media,” Opt. Eng.44(11), 116002 (2005). [CrossRef]
  3. H. Li, X. Wang, T. Bai, W. Jin, Y. Huang, and K. Ding, “Speckle noise suppression of range-gated underwater imaging system,” Proc. SPIE7443, 74432A, 74432A-8 (2009). [CrossRef]
  4. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35(19), 3447–3458 (1996). [CrossRef] [PubMed]
  5. A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett.33(5), 470–472 (2008). [CrossRef] [PubMed]
  6. M. P. Rowe, E. N. Pugh, J. S. Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for observation through scattering media,” Opt. Lett.20(6), 608–610 (1995). [CrossRef] [PubMed]
  7. P. C. Y. Chang, J. G. Walker, K. I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Commun.159(1–3), 1–6 (1999). [CrossRef]
  8. S. A. Kartazayeva, X. Ni, and R. R. Alfano, “Backscattering target detection in a turbid medium by use of circularly and linearly polarized light,” Opt. Lett.30(10), 1168–1170 (2005). [CrossRef] [PubMed]
  9. T. Novikova, A. Bénière, F. Goudail, and A. De Martino, “Sources of possible artefacts in the contrast evaluation for the backscattering polarimetric images of different targets in turbid medium,” Opt. Express17(26), 23851–23860 (2009). [CrossRef] [PubMed]
  10. D. A. Miller and E. L. Dereniak, “Selective polarization imager for contrast enhancements in remote scattering media,” Appl. Opt.51(18), 4092–4102 (2012). [CrossRef] [PubMed]
  11. M. E. Zevallos, L. S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(01115), 1–3 (2005).
  12. C. Tan, G. Seet, A. Sluzek, X. Wang, C. T. Yuen, C. Y. Fam, and H. Y. Wong, “Scattering noise estimation of range-gated imaging system in turbid condition,” Opt. Express18(20), 21147–21154 (2010). [CrossRef] [PubMed]
  13. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt.38(18), 3937–3944 (1999). [CrossRef] [PubMed]
  14. X. Ni and R. R. Alfano, “Time-resolved backscattering of circularly and linearly polarized light in a turbid medium,” Opt. Lett.29(23), 2773–2775 (2004). [CrossRef] [PubMed]
  15. M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(6), 065601 (2005). [CrossRef] [PubMed]
  16. L. Xu, H. Li, and Y. Zheng, “Influence of single scattering and multiple scattering on backscattered Mueller matrix in turbid media,” Chin. Opt. Lett.7(1), 64–66 (2009). [CrossRef]
  17. Optical properties of “IntralipidTM”, an aqueous suspension of lipid droplets” (Steven Jacques, Oregon Medical Laser Center, 1998). http://omlc.ogi.edu/spectra/intralipid/index.html .
  18. D. Yong, L. Qiang, and L. Qingming, “Measurement of Particle Size Distribution and Refractive Index Using Azimuth-Resolved Based Diffuse Backscattering Light,” Acta Opt. Sin.26(8), 1214–1219 (2006).
  19. M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, and P. K. Gupta, “Polar decomposition of 3×3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express14(20), 9324–9337 (2006). [CrossRef] [PubMed]
  20. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt.35(11), 1855–1870 (1996). [CrossRef] [PubMed]
  21. M. K. Swami, S. Manhas, H. Patel, and P. K. Gupta, “Mueller matrix measurements on absorbing turbid medium,” Appl. Opt.49(18), 3458–3464 (2010). [CrossRef] [PubMed]
  22. B. J. DeBoo, J. M. Sasian, and R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt.44(26), 5434–5445 (2005). [CrossRef] [PubMed]
  23. D. B. Chenault and J. L. Pezzaniti, “Polarization imaging through scattering medium,” Proc. SPIE4133, 124–133 (2000). [CrossRef]
  24. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996). [CrossRef]
  25. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt.48(8), 1610–1618 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited