OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14159–14168

Plasmon-enhanced spectral changes in surface sum-frequency generation with polychromatic light

Luyu Wang, Franklin Che, Sergey A. Ponomarenko, and Zhizhang (David) Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 12, pp. 14159-14168 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically explore the spectral behavior of the fundamental and sum-frequency waves generated from the surface of a thin metal film in the Kretschmann configuration with coherent ultrashort pulses. We show that the spectra of reflected sum-frequency waves exhibit pronounced shifts for the incident fundamental waves close to the plasmon coupling angle. We also demonstrate that the scale of discovered plasmon-enhanced spectral changes is strongly influenced by the magnitude of the incidence angle and the bandwidth of the source spectrum.

© 2013 OSA

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(300.6170) Spectroscopy : Spectra

ToC Category:
Nonlinear Optics

Original Manuscript: March 27, 2013
Revised Manuscript: May 28, 2013
Manuscript Accepted: May 29, 2013
Published: June 6, 2013

Luyu Wang, Franklin Che, Sergey A. Ponomarenko, and Zhizhang (David) Chen, "Plasmon-enhanced spectral changes in surface sum-frequency generation with polychromatic light," Opt. Express 21, 14159-14168 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011). [CrossRef] [PubMed]
  2. P. N. Prasad, Nanophotonics (Wiley, 2004). [CrossRef]
  3. L. Novotny and B. Hechi, Principles of Nano-Optics (Cambridge University, 2006). [CrossRef]
  4. L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett.23, 1469–1470 (1988). [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999). [CrossRef]
  6. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974). [CrossRef]
  7. A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003). [CrossRef]
  8. S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003). [PubMed]
  9. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, and O. Sveto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29, 62–64 (2004). [CrossRef] [PubMed]
  10. M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004). [CrossRef] [PubMed]
  11. N. I. Zheludev and V. I. Emelyanov, “Phase-matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A.6, 26–28 (2004). [CrossRef]
  12. A. Liebsch, “Theory of sum frequency generation from metal surfaces,” Appl. Phys. B68, 301–304 (1999). [CrossRef]
  13. E. M. M. van der Ham, Q. H. F. Vrehen, E. R. Eltel, V. A. Yakovlev, E. V. Alieva, L. A. Kuzik, J. E. Petrov, V. A. Sychugov, and A. F. G. van der Meer, “Giant enhancement of sum-frequency yeild by surface-plasmon excitation,” J. Opt. Soc. Am. B16, 1146–1152 (1999). [CrossRef]
  14. A. T. Georges and N. E. Karatzas, “Optimizing the excitation of surface plasmon polaritions by difference-frequency generation on a gold surface,” Phys. Rev. B85, 155442–1–5 (2012). [CrossRef]
  15. F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976). [CrossRef]
  16. S. Polomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802–1–4 (2008). [PubMed]
  17. R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev.94, 107–125 (1994). [CrossRef]
  18. J. Vydra and M. Eich, “Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett.72, 275–277 (1998). [CrossRef]
  19. T.-H. Lan, Y.-K. Chyng, J. Li, and C.-H. Tien, “Plasmonic rainbow rings induced by white radial polarization,” Opt. Lett.37, 1205–1207 (2012). [CrossRef] [PubMed]
  20. Y. Nishijima, L. Roza, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012). [CrossRef] [PubMed]
  21. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995). [CrossRef]
  22. S. A. Ponomarenko, H. Roychowdhury, and E. Wolf, “Physical significance of complete spatial coherence of optical fields,” Phys. Lett. A345, 10–12 (2005). [CrossRef]
  23. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).
  24. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of nonstationary ensemble of pulses,” Opt. Lett.29, 394–396 (2004). [CrossRef] [PubMed]
  25. W. C. Chew, Waves and Fields in Inhomogeneous Media, II ed. (Institute of Electrical and Electronics Engineers, New York, 1995).
  26. R. W. Boyd, Nonlinear Optics, II ed. (Academic, Boston, 2003).
  27. W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994). [CrossRef]
  28. F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).
  29. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004). [CrossRef]
  30. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, II ed. (Academic, Boston, 2006).
  31. J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998). [CrossRef]
  32. S. A. Ponomarenko and E. Wolf, “Spectral anomalies in Fraunhofer diffraction,” Opt. Lett.27, 1211–1213 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited